Answer:
59.3° (nearest tenth)
Explanation:
Cosine Rule (for finding angles)
![\boxed{\sf \cos(C)=(a^2+b^2-c^2)/(2ab)}](https://img.qammunity.org/2023/formulas/mathematics/college/1qnuc5n6y15yurz7g0mc770z6cg783vlnp.png)
where:
- C = angle
- a and b = sides adjacent the angle
- c = side opposite the angle
From inspection of the given triangle:
- C = angle G
- a = side GI = 6
- b = side GH = 15
- c = side HI = 13
Substitute the values into the formula and solve for G:
![\implies \sf \cos(G)=(6^2+15^2-13^2)/(2(6)(15))](https://img.qammunity.org/2023/formulas/mathematics/college/52k5qmvesv87qagn1ccpw9o2vzs5eolaii.png)
![\implies \sf \cos(G)=(36+225-169)/(180)](https://img.qammunity.org/2023/formulas/mathematics/college/bjdjfim9q2jeh3rgxonx1yc1eqs3txqs2x.png)
![\implies \sf \cos(G)=(92)/(180)](https://img.qammunity.org/2023/formulas/mathematics/college/dcvttdax2bcvmrjgf4walzuzkrfet52201.png)
![\implies \sf G=\cos^(-1) \left((92)/(180)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/yo2z227uwvb7lnv8o1p17ohumypldr944c.png)
![\implies \sf G=59.26213133...^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/e1g91s67iecwb0a6bcs9gdl80zz3aj8xfl.png)
Therefore, the measure of angle G is 59.3° (nearest tenth).