485,891 views
30 votes
30 votes
Prove that: lim_x → ∞ [x + (1/x)]^x = e​

Prove that: lim_x → ∞ [x + (1/x)]^x = e​-example-1
User Leucos
by
2.9k points

2 Answers

29 votes
29 votes

Answer:search up

Explanation:

User Disklosr
by
2.4k points
12 votes
12 votes

Explanation:

Given Question

Prove that,


\displaystyle\lim_(x \to \infty )\rm \bigg[1 + {(1)/(x) }\bigg]^(x) = e


\red{\large\underline{\sf{Solution-}}}

Consider,


\rm :\longmapsto\:\displaystyle\lim_(x \to \infty )\rm \bigg[1 + {(1)/(x) }\bigg]^(x)

Let assume that


\rm :\longmapsto\:y = \displaystyle\lim_(x \to \infty )\rm \bigg[1 + {(1)/(x) }\bigg]^(x)

Taking log on both sides, we get


\rm :\longmapsto\: log_(e)(y) = \displaystyle\lim_(x \to \infty )\rm log_(e) \bigg[1 + {(1)/(x) }\bigg]^(x)

We know,


\red{\rm :\longmapsto\:\boxed{\tt{ log {x}^(y) = y \: logx}}}

So, using this, we get


\rm :\longmapsto\: log_(e)(y) = \displaystyle\lim_(x \to \infty )\rm xlog_(e) \bigg[1 + {(1)/(x) }\bigg]

We know,


\rm :\longmapsto\:\boxed{\tt{ log_(e)(1 + x) = x - \frac{ {x}^(2) }{2} + \frac{ {x}^(3) }{3} + - - - - }}

So, using this, we get


\rm :\longmapsto\: log_(e)(y) = \displaystyle\lim_(x \to \infty )\rm x \bigg[(1)/(x) - {\frac{1}{ {2x}^(2) } + \frac{1}{ {3x}^(3)} - \frac{1}{ {4x}^(4) } + - - - }\bigg]

So, using this ,we get


\rm :\longmapsto\: log_(e)(y) = \displaystyle\lim_(x \to \infty )\rm \bigg[1 - {(1)/( 2x ) + \frac{1}{ {3x}^(2)} - \frac{1}{ {4x}^(3) } + - - - }\bigg]


\rm :\longmapsto\: log_(e)(y) = 1


\bf\implies \:y = e


\bf\implies \:\:\displaystyle\lim_(x \to \infty )\rm \bigg[1 + {(1)/(x) }\bigg]^(x) = e

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information


\boxed{\tt{ \displaystyle\lim_(x \to 0)\rm (sinx)/(x) = 1}}


\boxed{\tt{ \displaystyle\lim_(x \to 0)\rm (tanx)/(x) = 1}}


\boxed{\tt{ \displaystyle\lim_(x \to 0)\rm (log(1 + x))/(x) = 1}}


\boxed{\tt{ \displaystyle\lim_(x \to 0)\rm \frac{ {e}^(x) - 1}{x} = 1}}


\boxed{\tt{ \displaystyle\lim_(x \to 0)\rm \frac{ {a}^(x) - 1}{x} = loga}}

User Geographika
by
2.8k points