32.5k views
1 vote
If anyone can help me to solve this!!​

If anyone can help me to solve this!!​-example-1
User Atulmy
by
7.4k points

1 Answer

2 votes

Answer:


\textsf{1.} \quad x=-6, \quad x=6


\textsf{2.} \quad x=-5, \quad x=2


\textsf{3.} \quad x=-3, \quad x=7


\textsf{4.} \quad x=(-5 +√(57) )/(4), \quad x=(-5 -√(57) )/(4)


\textsf{5.} \quad x=(7+ √(309) )/(10), \quad x=(7-√(309) )/(10)

Explanation:

Question 1

Method: Extracting the Square Root


\begin{aligned}& \textsf{Given}: & x^2 & = 36\\& \textsf{Square root both sides}: & √(x^2) & = √(36)\\& \textsf{Simplify}: & x & = \pm 6\\&\textsf{Solution}:&x& = -6, 6\end{aligned}

Question 2

Method: Factoring


\begin{aligned}& \textsf{Given}: & x^2+3x-10 & = 0\\& \textsf{Split the middle term}: & x^2+5x-2x-10 & = 0\\& \textsf{Factor the first two and the last two terms}: & x(x+5)-2(x+5)&=0\\& \textsf{Factor out the common term $(x+5)$}: & (x-2)(x+5)&=0\\& \textsf{Apply the zero-product property}: & (x-2)=0 \implies x&=2\\ &&(x+5)=0 \implies x&=-5\\ & \textsf{Solution}: & x&=-5,2\end{aligned}

Question 3

Method: Factoring


\begin{aligned}& \textsf{Given}: & x^2-4x-21 & = 0\\& \textsf{Split the middle term}: & x^2-7x+3x-21 & = 0\\& \textsf{Factor the first two and the last two terms}: & x(x-7)+3(x-7)&=0\\& \textsf{Factor out the common term $(x-7)$}: & (x+3)(x-7)&=0\\& \textsf{Apply the zero-product property}: & (x+3)=0 \implies x&=-3\\&&(x-7)=0 \implies x&=7\\& \textsf{Solution}: & x & = -3, 7\end{aligned}

Question 4

Method: Quadratic Formula


\boxed{\begin{minipage}{4 cm}\begin{center}\underline{Quadratic Formula}\end{center}\\\\\begin{center}$x=(-b \pm √(b^2-4ac))/(2a)$\end{center}\\\\\\\begin{center}when $ax^2+bx+c=0$\end{center}\end{minipage}}

Given:


5x-4=-2x^2

Rearrange into standard form by adding 2x² to both sides:


\implies 2x^2+5x-4=0

Therefore:


a=2, \quad b=5, \quad c=-4

Substitute the values into the quadratic formula and solve for x:


\implies x=(-5 \pm √(5^2-4(2)(-4)) )/(2(2))


\implies x=(-5 \pm √(25+32) )/(4)


\implies x=(-5 \pm √(57) )/(4)

Therefore, the solutions are:


x=(-5 +√(57) )/(4), \quad x=(-5 -√(57) )/(4)

Question 5

Method: Quadratic Formula


\boxed{\begin{minipage}{4 cm}\begin{center}\underline{Quadratic Formula}\end{center}\\\\\begin{center}$x=(-b \pm √(b^2-4ac))/(2a)$\end{center}\\\\\\\begin{center}when $ax^2+bx+c=0$\end{center}\end{minipage}}

Given:


5x^2-7x-13=0

Therefore:


a=5, \quad b=-7, \quad c=-13

Substitute the values into the quadratic formula and solve for x:


\implies x=(-(-7) \pm √((-7)^2-4(5)(-13)) )/(2(5))


\implies x=(7 \pm √(49+260) )/(10)


\implies x=(7 \pm √(309) )/(10)

Therefore, the solutions are:


x=(7+ √(309) )/(10), \quad x=(7-√(309) )/(10)

User Chinmay Kanchi
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories