115k views
7 votes
The volume of a rectangular solid is given by the polynomial 3x^4-3x^3-33x^2+54x. If the length of the solid is 3x and the width of the solid is x-2 Find the height?

The volume of a rectangular solid is given by the polynomial 3x^4-3x^3-33x^2+54x. If-example-1
User Mafu
by
4.4k points

1 Answer

1 vote

Answer:


\mathsf{height}=x^2+x-9

Explanation:

Volume of a cuboid = L x w x h

(where L is the length, w is the width and h is the height)


\implies \mathsf{height=(volume)/(width * length) }

Given:


\mathsf{volume}=3x^4-3x^3-33x^2+54x


\mathsf{width}=x-2


\mathsf{length}=3x


\implies \mathsf{height}=(3x^4-3x^3-33x^2+54x)/(3x(x-2))

Factor expression for volume

Factor out common term
3x:
3x(x^3-x^2-11x+18)

Factor
x^3-x^2-11x+18:
3x(x-2)(x^2+x-9)


\implies \mathsf{height}=(3x(x-2)(x^2+x-9))/(3x(x-2))

Cancel the common factors
3x(x-2):


\implies \mathsf{height}=x^2+x-9

User Daemeron
by
4.6k points