3,567 views
31 votes
31 votes
Q). The degree of (- 1/20 x⁴y³) × (- 5 x⁷y²) is​

Q). The degree of (- 1/20 x⁴y³) × (- 5 x⁷y²) is​-example-1
User John Virgolino
by
3.0k points

1 Answer

7 votes
7 votes

Explanation:


\large\underline{\sf{Given \:Question - }}

The degree of


\rm :\longmapsto\:\bigg( - (1)/(20) {x}^(4) {y}^(3)\bigg) * \bigg( - 5 {x}^(7) {y}^(2) \bigg)


\green{\large\underline{\sf{Solution-}}}

Given polynomial is


\rm :\longmapsto\:\bigg( - (1)/(20) {x}^(4) {y}^(3)\bigg) * \bigg( - 5 {x}^(7) {y}^(2) \bigg)

can be regrouped as


\rm \:  =  \: \bigg( - (1)/(20) * ( - 5) \bigg) * \bigg( {x}^(4) * {x}^(7)\bigg) * \bigg( {y}^(3) * {y}^(2) \bigg)

We know,


\red{\rm :\longmapsto\:\boxed{\tt{ {x}^(m) \: * \: {x}^(n) \: = \: {x}^(m \: + \: n) \: }}}

So,


\rm \:  =  \: (1)/(4) * {x}^(4 + 7) * {y}^(3 + 2)


\rm \:  =  \: (1)/(4) * {x}^(11) * {y}^(5)


\rm \:  =  \: \frac{ {x}^(11) * {y}^(5) }{4}


\rm \:  =  \: \frac{ {x}^(11) \: {y}^(5) }{4}

Thus,


\rm :\longmapsto\:\boxed{\tt{ \bigg( - (1)/(20) {x}^(4) {y}^(3)\bigg) * \bigg( - 5 {x}^(7) {y}^(2) \bigg) = \frac{ {x}^(11) \: {y}^(5) }{4} \: }}

So, Degree of polynomial expression is 16.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn More :-


\boxed{\tt{ {x}^(m) * {x}^(n) = {x}^(m + n) \: }}


\boxed{\tt{ {x}^(m) / {x}^(n) = {x}^(m - n) \: }}


\boxed{\tt{ {( {x}^(m)) }^(n) \: = \: {x}^(mn) \: }}


\boxed{\tt{ {x}^(0) = 1 \: }}


\boxed{\tt{ {x}^( - n) \: = \: \frac{1}{ {x}^(n) } \: }}

User Khilo
by
2.7k points