Answer:
![\textsf{27.} \quad \textsf{Vertex}:(-4,-5) \quad \textsf{$x$-intercepts}: x=-4+√(5), \:\:x=-4-√(5)](https://img.qammunity.org/2023/formulas/mathematics/college/p5mcjgo7zfhghp0ygbbgbpiao2rbm57dfs.png)
![\textsf{28.} \quad \textsf{Vertex}:(-5,-11) \quad \textsf{$x$-intercepts}: x = -5+√(11), \:\:x=-5-√(11)](https://img.qammunity.org/2023/formulas/mathematics/college/u5ph6ao03wdv8m3207mmy11yzdmolc6yft.png)
![\textsf{29.} \quad \textsf{Vertex}:(1,16) \quad \textsf{$x$-intercepts}: x = 5, \:\:x=-3](https://img.qammunity.org/2023/formulas/mathematics/college/go1vq3x171q76y25nr3mcj4yv58bn7hyv1.png)
Explanation:
Vertex form of a quadratic function:
![\boxed{y=a(x-h)^2+k}](https://img.qammunity.org/2023/formulas/mathematics/high-school/lvp7xwe62mxkmylhlneh35g6onw1d1noj2.png)
where:
- (h, k) is the vertex.
is some constant.
Question 27
Given function:
![g(x)=x^2+8x+11](https://img.qammunity.org/2023/formulas/mathematics/college/6bu0jyx6o98h0i51ge82oywzar74apibgv.png)
Change to vertex form by completing the square.
Add and subtract the square of half the coefficient of x:
![\implies g(x)=x^2+8x+11 +\left((8)/(2)\right)^2-\left((8)/(2)\right)^2](https://img.qammunity.org/2023/formulas/mathematics/college/880clz18y5g9m070ucm5l1vj5qldkoy76l.png)
![\implies g(x)=x^2+8x+11 +16-16](https://img.qammunity.org/2023/formulas/mathematics/college/l7je4mjskh6g7voqktl52uvw0shob32hdl.png)
![\implies g(x)=x^2+8x+16+11-16](https://img.qammunity.org/2023/formulas/mathematics/college/vx3tzne4cuvh8n7yzlk6csmdm1co28iv83.png)
![\implies g(x)=x^2+8x+16-5](https://img.qammunity.org/2023/formulas/mathematics/college/rzhfajr32mlp3k8owsi0i49t6gt0u0cau3.png)
Factor the perfect trinomial:
![\implies g(x)=(x+4)^2-5](https://img.qammunity.org/2023/formulas/mathematics/college/dn2tw0n7ntvr5jbxix9hhp70rcb7nzov5i.png)
Therefore, the vertex is (-4, -5).
To find the x-intercepts, set the function to zero and solve for x:
![\begin{aligned}g(x) & = 0\\\implies (x+4)^2 -5 & = 0\\(x+4)^2 & = 5\\√((x+4)^2) & = √(5)\\x+4&=\pm√(5)\\x+4-4&=-4\pm√(5)\\x&=-4\pm√(5)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/zj2z1ds10o1avin4opdp26vct4she5aw1u.png)
Therefore, the x-intercepts are:
![x = -4+√(5), \quad x = -4-√(5)](https://img.qammunity.org/2023/formulas/mathematics/college/gbmq4jwmh2aecq7gvcnlteajw5x8ndhi0o.png)
---------------------------------------------------------------------
Question 28
Given function:
![f(x)=x^2+10x+14](https://img.qammunity.org/2023/formulas/mathematics/college/b6auivls685km1rl8evup5f7zh4baug35s.png)
Change to vertex form by completing the square.
Add and subtract the square of half the coefficient of x:
![\implies f(x)=x^2+10x+14+\left((10)/(2)\right)^2-\left((10)/(2)\right)^2](https://img.qammunity.org/2023/formulas/mathematics/college/pnqwrkrer1e0rv5oy61k8tz3nourxtd7dt.png)
![\implies f(x)=x^2+10x+14+25-25](https://img.qammunity.org/2023/formulas/mathematics/college/d5ta9035hng16un36nk96wg73riuo8xd46.png)
![\implies f(x)=x^2+10x+25+14-25](https://img.qammunity.org/2023/formulas/mathematics/college/wvex1r97dc9o7h884kisv9dvvdx2nmpmo5.png)
![\implies f(x)=x^2+10x+25-11](https://img.qammunity.org/2023/formulas/mathematics/college/ucqfmgvon0ck46vvqcayqrl776f2y94w2a.png)
Factor the perfect trinomial:
![\implies f(x)=(x+5)^2-11](https://img.qammunity.org/2023/formulas/mathematics/college/ib5n88w2onwkb7e1b7mn5ivfvamtjw2ese.png)
Therefore, the vertex is (-5, -11).
To find the x-intercepts, set the function to zero and solve for x:
![\begin{aligned}f(x) & = 0\\\implies (x+5)^2 -11 & = 0\\(x+5)^2 & = 11\\√((x+5)^2) & = √(11)\\x+5&=\pm√(11)\\x+5-5&=-5\pm√(11)\\x&=-5\pm√(11)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/okjmqqa9ng9hr2pe2atynz6bi0svs220th.png)
Therefore, the x-intercepts are:
![x = -5+√(11), \quad x = -5-√(11)](https://img.qammunity.org/2023/formulas/mathematics/college/x29gz4f2voukbvf5xngd56fhygyj18icc3.png)
---------------------------------------------------------------------
Question 29
Given function:
![f(x)=-(x^2-2x-15)](https://img.qammunity.org/2023/formulas/mathematics/college/nm650ksphh5hu2m7gd049in01zibbmlqmw.png)
Change to vertex form by completing the square.
Add and subtract the square of half the coefficient of x:
![f(x)=-\left(x^2-2x-15+\left((-2)/(2)\right)^2-\left((-2)/(2)\right)^2\right)](https://img.qammunity.org/2023/formulas/mathematics/college/ti0c1c0kbxumwj56pnrisv60ia0fejxfqk.png)
![f(x)=-\left(x^2-2x-15+1-1\right)](https://img.qammunity.org/2023/formulas/mathematics/college/jrwgid7heyn7678ivnnsb55lwcdfqk8v9b.png)
![f(x)=-\left(x^2-2x+1-15-1\right)](https://img.qammunity.org/2023/formulas/mathematics/college/8qcc676pq3j07kf72ia6mcan1sc286fk7w.png)
![f(x)=-\left(x^2-2x+1-16\right)](https://img.qammunity.org/2023/formulas/mathematics/college/lpst56ujkjnycgzgksdd26rifwddc5blzj.png)
Factor the perfect trinomial:
![f(x)=-\left((x-1)^2-16\right)](https://img.qammunity.org/2023/formulas/mathematics/college/tsy7kfphbyjw3ze8x997uuvixo3qkgup4a.png)
Simplify:
![f(x)=-(x-1)^2+16](https://img.qammunity.org/2023/formulas/mathematics/college/o6c3sui4x24fuhx8hqgkulsgu701czl513.png)
Therefore, the vertex is (1, 16).
To find the x-intercepts, set the function to zero and solve for x:
![\begin{aligned}f(x) & = 0\\\implies -(x-1)^2 +16 & = 0\\(x-1)^2 -16 & = 0\\(x-1)^2 & = 16\\√((x-1)^2) & = √(16)\\x-1&=\pm4\\x-1+1&=1\pm4\\x&=5,-3\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/l5ts83fef4pi97ycpws6h0vc6rhvhu3kks.png)
Therefore, the x-intercepts are:
![x = 5, \quad x=-3](https://img.qammunity.org/2023/formulas/mathematics/college/4qzs2qo9j1sv06hiel8vc6c8ws1qgqfrah.png)