Answer:
![\textsf{Increasing function}: \quad \left[0, (1)/(16)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/jw1xaf58fqu3kchdo87rrp6qvgz70199m4.png)
![\textsf{Decreasing function}: \quad \left((1)/(16), \infty\right)](https://img.qammunity.org/2023/formulas/mathematics/college/7ibpajlc7xro63sf792w4k9ynwg278vfgs.png)
Explanation:
Given function:
![f(x)=√(x)-2x](https://img.qammunity.org/2023/formulas/mathematics/college/qb10urea39wj2uf75i4z27p3uzh96oa4zj.png)
As a negative number cannot be square rooted, the domain of the function is restricted to [0, ∞).
![\textsf{A function is \textbf{increasing} when the \underline{gradient is positive}}\implies f'(x) > 0](https://img.qammunity.org/2023/formulas/mathematics/college/mf7czlnb3wx8k6erw4l8c3brp032xlvxsp.png)
![\textsf{A function is \textbf{decreasing} when the \underline{gradient is negative}} \implies f'(x) < 0](https://img.qammunity.org/2023/formulas/mathematics/college/rdern1tfltsin2kmh4upq36ewb3epbhc28.png)
Differentiating produces an algebraic expression for the gradient as a function of x. Therefore, differentiate the given function:
![\begin{aligned}f(x) & = √(x)-2x\\& = x^{(1)/(2)}-2x\\\implies f'(x) & = (1)/(2)x^{\left((1)/(2)-1\right)}-2x^((1-1))\\ & = (1)/(2)x^{-(1)/(2)}-2x^0\\ & = (1)/(2√(x))-2\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/7z547hyeuj64ixfzj7yc1tmt3h9t2ck74w.png)
Increasing function
To find the interval where f(x) is increasing, set the differentiated function to more than zero and solve for x:
![\begin{aligned}f'(x) & > 0\\\implies (1)/(2√(x))-2 & > 0\\(1)/(2√(x)) & > 2\\\ (1)/(2) & > 2√(x)\\(1)/(2 \cdot 2) & > √(x)\\ (1)/(4) & > √(x)\\ √(x) & < (1)/(4)\\\left(√(x)\right)^2 & < \left((1)/(4)\right)^2\\ x & < (1)/(16)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/67ynl06fmvg1exx3qv0xwbspmq296oqirn.png)
As the domain is restricted, the function is increasing when:
![\textsf{Solution}: \quad 0 \leq x < (1)/(16)](https://img.qammunity.org/2023/formulas/mathematics/college/sls0l79mgki5hcrlr866qsipjas4zatl06.png)
![\textsf{Interval notation}: \quad \left[0, (1)/(16)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/joptmuwv6ntcra6ag6xf3mrdpuq1axl0id.png)
Decreasing function
To find the interval where f(x) is decreasing, set the differentiated function to less than zero and solve for x:
![\begin{aligned}f'(x) & < 0\\\implies (1)/(2√(x))-2 & < 0\\(1)/(2√(x)) & < 2\\\ (1)/(2) & < 2√(x)\\(1)/(2 \cdot 2) & < √(x)\\ (1)/(4) & < √(x)\\ √(x) & > (1)/(4)\\\left(√(x)\right)^2 & > \left((1)/(4)\right)^2\\ x & > (1)/(16)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/k5vaivuqlubfvzmn25smdyabwv1az25pvu.png)
Therefore, the function is decreasing when:
![\textsf{Solution}: \quad x > (1)/(16)](https://img.qammunity.org/2023/formulas/mathematics/college/gza5dhlz2da85k0bo6c96ylgs4dqhjvmg0.png)
![\textsf{Interval notation}: \quad \left((1)/(16), \infty\right)](https://img.qammunity.org/2023/formulas/mathematics/college/mvp5mah5j179eb0uwy58vqejlqdady9n9y.png)
Note: The answer quoted in the original question is incorrect for the quoted function (please refer to the attached graph for proof).
Differentiation Rules
![\boxed{\begin{minipage}{4.8 cm}\underline{Differentiating $ax^n$}\\\\If $y=ax^n$, then $\frac{\text{d}y}{\text{d}x}=nax^(n-1)$\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/college/jd9yulc9ok9s5ihxu08u0mey6xjdl9zpkr.png)