78.3k views
2 votes
Use symmetry to evaluate the following integral.


\int\limits^4_(-4) {(x^3+3x)/(x^4+5) } \, dx

1 Answer

5 votes

The integrand is odd.


f(x) = (x^3 + 4x)/(x^4 + 5) \implies f(-x) = ((-x)^3 + 4(-x))/((-x)^4 + 5) = (-x^3-4)/(x^4+5) = -f(x)

The integral of an odd function over a symmetric interval is zero, so


\displaystyle \int_(-4)^4 (x^3+3x)/(x^4+5) \, dx = 0

This is because


\displaystyle \int_(-a)^a f(x) \, dx = \int_(-a)^0 f(x) \, dx + \int_0^a f(x) \, dx \\\\ ~~~~ = -\int_0^(-a) f(x) \, dx + \int_0^a f(x) \, dx \\\\ ~~~~ = \int_0^(-a) f(-x) \, dx + \int_0^a f(x) \, dx \\\\ ~~~~ = -\int_0^a f(x) \, dx + \int_0^a f(x) \, dx = 0

where we substitute
x\mapsto-x in the second-to-last equality.

User Fazy
by
5.3k points