343,719 views
23 votes
23 votes
Using the quadratic formula to solve x2 = 5 – X, what are the values of X?

-1021
2
-1 + 19
2
5+21
2
1+ /19/
2

Using the quadratic formula to solve x2 = 5 – X, what are the values of X? -1021 2 -1 + 19 2 5+21 2 1+ /19/ 2-example-1
User Rerun
by
3.1k points

1 Answer

21 votes
21 votes

Answer:


A)\:x=(-1\pm√(21))/(2)

Explanation:


x^2=5-x

Add x from both sides:


\longmapsto
x^2+x=5-x+x


\longmapsto
x^2+x=5

Subtract 5 from both sides:


\longmapsto
x^2+x-5=5-5


\longmapsto
x^2+x-5=0

Now, we'll use the quadratic formula to solve this problem:
x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)


\longmapsto
x_(1,\:2)=(-1\pm √(1^2-4* \:1\cdot \left(-5\right)))/(2* \:1)


\longmapsto
√(1^2-4* \:1* \left(-5\right))


\longmapsto
1^2=1


\longmapsto
√(1+4* \:1* \:5)

Multiply 4*1*5= 20


\longmapsto
√(1+20)

Add 1 and 20= 21


\longmapsto
√(21)


\longmapsto
x_(1,\:2)=(-1\pm √(21))/(2* \:1)


\longmapsto
x_1=(-1+√(21))/(2* \:1)


\longmapsto
(-1+√(21))/(2* \:1)

Multiply 2 and 1= 2


\longmapsto
(-1+√(21))/(2)


\longmapsto
x_2=(-1-√(21))/(2* \:1)


\longmapsto
(-1-√(21))/(2* \:1)

Multiply 2 and 1= 2


\longmapsto
(-1-√(21))/(2)


\longmapsto
x=(-1+√(21))/(2),\:x=(-1-√(21))/(2)


\hookrightarrow
x=(-1\pm√(21))/(2)

________________________

User Parth Modi
by
2.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.