454,744 views
30 votes
30 votes
Matrics Assisment
Q.5) If A = [7 3 ; 0 5] and B = [3 0 ; 0 4] then find 3A - 4B.​

Matrics Assisment Q.5) If A = [7 3 ; 0 5] and B = [3 0 ; 0 4] then find 3A - 4B.​-example-1
User Pulkit Khandelwal
by
2.7k points

2 Answers

27 votes
27 votes

Answer:

ans=[09;0-1]

Explanation:

I think the ans will be [09;0-1]

I hope it will help u.

User Niklassaers
by
3.2k points
12 votes
12 votes


\textsf{\large{\underline{Solution 5}:}}

Here:


\rm:\longmapsto A =\begin{bmatrix} 7&0\\ 3&5\end{bmatrix}


\rm:\longmapsto B=\begin{bmatrix} 3&0\\ 0&4 \end{bmatrix}

Therefore, the matrix 3A - 4B will be:


\rm = 3\begin{bmatrix} 7&0\\ 3&5\end{bmatrix} - 4\begin{bmatrix} 3&0 \\ 0&4\end{bmatrix}


\rm = \begin{bmatrix} 21&0\\ 9&15\end{bmatrix} - \begin{bmatrix} 12&0 \\ 0&16\end{bmatrix}


\rm = \begin{bmatrix} 9&0\\ 9& - 1\end{bmatrix}

Therefore:


\rm: \longmapsto 3A - 4B = \begin{bmatrix} 9&0\\ 9& - 1\end{bmatrix}


\textsf{\large{\underline{Learn More}:}}

Matrix: A matrix is a rectangular arrangement of numbers in the form of horizontal and vertical lines.

Horizontal lines are called rows and vertical lines are called columns.

Order of Matrix: A matrix containing x rows and y column has order x × y and it has xy elements.

Different types of matrices:

Row Matrix: This type of matrices have only 1 row. Example:


\rm:\longmapsto A=\begin{bmatrix}\rm 1&\rm 2&\rm 3\end{bmatrix}

Column Matrix: This type of matrices have only 1 column. Example:


\rm:\longmapsto A=\begin{bmatrix}\rm1\\ \rm2\\ \rm3\end{bmatrix}

Square Matrix: In this type of matrix, number of rows and columns are equal. Example:


\rm:\longmapsto A=\begin{bmatrix}\rm 1&\rm 2\\ \rm 3&\rm 4\end{bmatrix}

Zero Matrix: It is a matrix with all elements present is zero. Example:


\rm:\longmapsto A=\begin{bmatrix}\rm 0&\rm 0\\ \rm 0&\rm 0\end{bmatrix}

Identity Matrix: In this type of matrix, diagonal element is 1 and remaining elements are zero. An Identity matrix is always a square matrix. Example:


\rm:\longmapsto A=\begin{bmatrix}\rm 1&\rm 0\\ \rm 0&\rm 1\end{bmatrix}

User Tosca
by
3.0k points