213k views
5 votes
How do I figure this out

How do I figure this out-example-1
User Archmede
by
7.8k points

1 Answer

3 votes

Answer:


27^{(1)/(3)} \quad 125^{(2)/(3)} \quad 9^{(3)/(2)}

Explanation:

Rewrite 9 as 3²:


\implies 9^{(3)/(2)}=\left(3^2\right)^{(3)/(2)}


\textsf{Apply exponent rule} \quad (a^b)^c=a^(bc):


\implies 3^{(2 \cdot (3)/(2))}=3^3

Therefore:


\implies 3^3= 3 \cdot 3 \cdot 3=27

---------------------------------------------------------

Rewrite 27 as 3³:


\implies 27^{(1)/(3)}=\left(3^3\right)^{(1)/(3)}


\textsf{Apply exponent rule} \quad (a^b)^c=a^(bc):


\implies 3^{(3 \cdot (1)/(3))}=3^1

Therefore:


\implies 3^1=3

---------------------------------------------------------

Rewrite 125 as 5³:


\implies 125^{(2)/(3)}=\left(5^3\right)^{(2)/(3)}


\textsf{Apply exponent rule} \quad (a^b)^c=a^(bc):


\implies 5^{(3 \cdot (2)/(3))}=5^2

Therefore:


\implies 5^2=5 \cdot 5=25

---------------------------------------------------------

Solution

In order, from smallest to largest:


27^{(1)/(3)} \quad 125^{(2)/(3)} \quad 9^{(3)/(2)}

User Saurabh Saxena
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories