44,957 views
43 votes
43 votes
Prove that: √(sec x + 1)/(sec x - 1) = 1/(cosec x - cot x) ​

Prove that: √(sec x + 1)/(sec x - 1) = 1/(cosec x - cot x) ​-example-1
User Eladcon
by
2.9k points

2 Answers

20 votes
20 votes

Answer:

Sorry Bro

Explanation:

I don't know the ans plzz donnot mind

User Zavg
by
2.7k points
25 votes
25 votes


\large\underline{\sf{Solution-}}

Consider LHS


\rm :\longmapsto\: \sqrt{(secx + 1)/(secx - 1) }

can be rewritten as


\rm \:  =  \: \sqrt{((1)/(cosx) + 1 )/((1)/(cosx) - 1) }


\rm \:  =  \: \sqrt{((1 + cosx)/(cosx))/((1 - cosx)/(cosx)) }


\rm \:  =  \: \sqrt{(1 + cosx)/(1 - cosx) }

On rationalizing the numerator, we get


\rm \:  =  \: \sqrt{(1 + cosx)/(1 - cosx) * (1 - cosx)/(1 - cosx) }


\rm \:  =  \: \sqrt{\frac{1 - {cos}^(2) x}{ {(1 - cosx)}^(2) } }

We know,


\red{\rm :\longmapsto\:\boxed{\tt{ {sin}^(2)x + {cos}^(2)x = 1}}}

So, using this, we get


\rm \:  =  \: \frac{ \sqrt{ {sin}^(2) x} }{1 - cosx}


\rm \:  =  \: ( sinx )/(1 - cosx)


\rm \:  =  \: (1)/( \: \: \: \: (1 - cosx)/(sinx) \: \: \: \: )


\rm \:  =  \: (1)/( \: \: \: \: (1)/(sinx) - (cosx)/(sinx) \: \: \: \: )


\rm \:  =  \: (1)/( \: \: \: \: cosecx - cotx \: \: \: \: )

Hence, Proved


\rm \implies\:\: \boxed{\tt{ \sqrt{(secx + 1)/(secx - 1) } = (1)/(cosecx - cotx)}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

User Jkyle
by
2.9k points