114k views
0 votes
Determine the inverse of the function​

Determine the inverse of the function​-example-1
User JimmyBanks
by
4.2k points

1 Answer

4 votes

Answer:


f^(-1)(x)= (1)/(2)\ln \left(-(x^2)/(x^2-1)\right), \quad \textsf{for}\:\{x:0 < x < 1\}

Explanation:

Given function:


f(x)=\frac{e^x}{\sqrt{e^(2x)+1}}

The domain of the given function is unrestricted: {x : x ∈ R}

The range of the given function is restricted: {f(x) : 0 < f(x) < 1}

To find the inverse of a function, swap x and y:


\implies x=\frac{e^y}{\sqrt{e^(2y)+1}}

Rearrange the equation to make y the subject:


\implies x\sqrt{e^(2y)+1}=e^y


\implies x^2(e^(2y)+1)=e^(2y)


\implies x^2e^(2y)+x^2=e^(2y)


\implies x^2e^(2y)-e^(2y)=-x^2


\implies e^(2y)(x^2-1)=-x^2


\implies e^(2y)=-(x^2)/(x^2-1)


\implies \ln e^(2y)= \ln \left(-(x^2)/(x^2-1)\right)


\implies 2y \ln e= \ln \left(-(x^2)/(x^2-1)\right)


\implies 2y(1)= \ln \left(-(x^2)/(x^2-1)\right)


\implies 2y= \ln \left(-(x^2)/(x^2-1)\right)


\implies y= (1)/(2)\ln \left(-(x^2)/(x^2-1)\right)

Replace y with f⁻¹(x):


\implies f^(-1)(x)= (1)/(2)\ln \left(-(x^2)/(x^2-1)\right)

The domain of the inverse of a function is the same as the range of the original function. Therefore, the domain of the inverse function is restricted to {x : 0 < x < 1}.

Therefore, the inverse of the given function is:


f^(-1)(x)= (1)/(2)\ln \left(-(x^2)/(x^2-1)\right), \quad \textsf{for}\:\{x:0 < x < 1\}

User Pooran
by
4.6k points