190k views
1 vote
Can somebody explain this?

Can somebody explain this?-example-1
User Andromida
by
4.8k points

2 Answers

3 votes

Answer:


(2 x - 1 + y )/(2x + y + 1)

Explanation:

In the expression:


\frac{4 {x}^(2) - {y}^(2) - 4x + 1 }{4 {x}^(2) - {y}^(2) - 2y - 1 }

Reorder the terms


⟹\frac{(4 {x}^(2) - 4x + 1) - {y}^(2) }{4 {x}^(2) - {y}^(2) - 2y - 1 }

Rewrite the expression


⟹ \frac{(2x {)}^(2) - 2 * 2x + {1}^(2) - {y}^(2) }{ {4x}^(2) - {y}^(2) - 2y - 1 }

Factor the expression


⟹ \frac{(2x - 1 {)}^(2) - {y}^(2) }{4 {x}^(2) - {y}^(2) - 2y - 1 }


⟹ \frac{((2x - 1) + y)((2x - 1) - y)}{4 {x}^(2) - {y}^(2) - 2y - 1}

Reorder terms


\frac{((2x - 1) + y)((2x - 1) - y)}{ {4x}^(2) + ( - {y}^(2) - 2y - 1}

Factor greatest common factors out


\frac{((2x - 1) + y)((2x - 1) - y)}{ {4x}^(2) - ( {y}^(2) + 2y + 1) }

Rewrite the expression


\frac{((2x - 1) + y)((2x - 1) - y)}{ {4x}^(2) - ( {y}^(2) + 2y + {1}^(2)) }

Factor the expression


\frac{((2x - 1) + y)((2x - 1) - y)}{ {4x }^(2) - (y + 1)}

I'm sorry for breaking but it's a very long explanation

User Kfir Dadosh
by
5.1k points
5 votes

Answer:

2x-1+y

---------- (meant to be a fraction line)

2x+y+1

User LookIntoEast
by
5.1k points