126k views
13 votes
NEED HELP ASAP
Given G (-6,5) and H (2, -7), what is the length of GH

User Mrinmoy
by
4.7k points

1 Answer

9 votes


\bold{\huge{\green{\underline{ Solution }}}}


\bold{\underline{ Given}}

  • We have given that the coordinates of the end point G and H are ( -6,5) and ( 2, -7 )


\bold{\underline{To \: Find :- }}

  • We have to find the length of GH


\bold{\underline{Let's \: Begin :- }}

The coordinates of G = ( -6 , 5 )

The coordinates of H = ( 2 , - 7 )

According to the distance formula, we get :-


\purple{\bigstar}\boxed{\sf{Distance\:\:GH=√((x_1-x_2)^2+(y_1-y_2)^2\;)}}

  • Here, x1 = -6 , x2 = 2 and y1 = 5 , y2 = -7

Subsitute the required values in the above formula


\sf{ Distance \:GH = √( -6 - 2)² + ( 5 -(-7))²}


\sf{Distance\:GH= √(-8)^2+(5 + 7)^2}


\sf{Distance\:GH=√(-8)^2+(12)^2}


\sf{ Distance \:GH =√64 + 144 }


\sf{ Distance \:GH =√ 208}


\sf{ Distance\: GH = √ 2 × 2 × 2 × 2 × 13}


\sf{ Distance \:GH = 4√13}


\sf{\red{ Hence\: the \: length\:of \: GH \: is \: 4√13 \: units}}

User Kanak Sony
by
4.6k points