The curve intersects the vertical lines when
![x=2 \implies y = \frac1{2+2^3} = \frac1{10}](https://img.qammunity.org/2023/formulas/mathematics/college/6e5rxym0g9yynee9lfp9q37tpeibf2bna5.png)
and
![x=3 \implies y = \frac1{2+3^3} = \frac1{29}](https://img.qammunity.org/2023/formulas/mathematics/college/y0bmfmcbbtetccvgekrjv22p52pg3m3hma.png)
Split up the region into washers of thickness
.
For
, the inner and outer radii of each washer will be constant, with outer radius
and inner radius
. Each washer in this interval will contribute a total volume of
![\pi (3^2 - 2^2) \Delta y = 5\pi\,\Delta y](https://img.qammunity.org/2023/formulas/mathematics/college/87v2gkp9msah7g5wn0xsp4rdps1ghzg9b2.png)
For
, the washers will have a varying outer radius of length
![y=\frac1{2+x^3} \implies x = \sqrt[3]{\frac1y - 2}](https://img.qammunity.org/2023/formulas/mathematics/college/euwufbamwnomv2r0xxtoho1u7v6yynn8rr.png)
and inner radius
. Their volumes are
![\pi \left(\left(\sqrt[3]{\frac1y - 2}\right)^2 - 2^2\right) \, \Delta y = \pi \left(\left(\frac1y - 2\right)^(2/3) - 4\right) \, \Delta y](https://img.qammunity.org/2023/formulas/mathematics/college/uhejndig8m4bqyzwq6nfuwxd0hcgc1emev.png)
Let
. Then as the number of washers goes to infinity, the total volume of the solid converges to the definite integral
![\displaystyle 5\pi \int_(-1)^(1/29) dy + \pi \int_(1/29)^(1/10) \left(\left(\frac1y - 2\right)^(2/3) - 4\right) \, dy](https://img.qammunity.org/2023/formulas/mathematics/college/npammypvnpvf020rbyfzrcau50hu6akyfc.png)
The first integral is trivial, but the second one requires hypergeometric functions to evaluate exactly. With a calculator, we find the approximate volume to be 0.117884.