174k views
3 votes

\: \: \: \: \: \: \: \: \: \: \:

\: \: \: \: \: \: \: \: \: \: \:​-example-1

1 Answer

2 votes

(A) (m,n) = g(n,m) for all positive integers m,n,

(B) (m,n + 1) = g(m + 1,n) for all positive integers m,n,

(D) (2m,2n) = (g(m,n))2 for all positive integers m,n

Step-by-step explanation


\rm f(m,n,p) = \sum \limits_(i = 0)^(p) {}^(m) C_(i) \: \: {}^(n + i) C_(p) \: \: {}^(p + n) C_(p - i)


\rm {}^(m) C_(i) \: \: {}^(n + i) C_(p) \: \: {}^(p + n) C_(p - i)


\rm {}^(m) C_(i) ((n + i)!)/(p!(n - p + i)!) * ((n + p)!)/((p - i)!(n + i)!)


\rm {}^(m) C_(i) * ((n + p)!)/(p!) * (1!)/((n -p + i)!(p - i)!)


\rm {}^(m) C_(i) * ((n + p)!)/(p!) * (1!)/((n -p + i)!(p - i)!)


\rm {}^(m) C_(i) * ((n + p)!)/(p!n!) * (n!)/((n -p + i)!(p - i)!)


\rm {}^(m) C_(i) \: \: {}^(n + p) C_(p) \: \: {}^(n) C_(p - i) \: \: \{{}^(m) C_(i) \: \: {}^(n ) C_(p - i) = {}^(m + n) C_(p ) \}


\rm {}^(m) C_(i) \: \: {}^(n + p) C_(p) \: \: {}^(n) C_(p - i) \: \: \{{}^(m) C_(i) \: \: {}^(n ) C_(p - i) = {}^(m + n) C_(p ) \}


\rm f(m,n,p) = {}^(n + p) C_(p){}^(m + n) C_(p)


\rm \frac{f(m,n,p)}{{}^(n + p) C_(p)} = {}^(m + n) C_(p)

Now,


\rm g(m,n) = \sum \limits_(p = 0)^(m + n) \frac{f(m,n,p)}{{}^(n + p) C_(p)}


\rm g(m,n) = \sum \limits_(p = 0)^(m + n) {}^(m + n) C_(p)


\rm g (m,n) = {2}^(m + n)


\rm(A) \: g(m,n) = q(n,m)


\rm(B) \: g(m,n + 1) = {2}^(m + n + 1)


\rm g(m + n,n ) = {2}^(m + 1 + n)


\rm(D) \: g(2m,2n) = {2}^(2m + 2n)


= \rm( {2}^(m + n) {)}^(2)


= \rm(g(m,n)) {}^(2)

User Vladsiv
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories