102k views
4 votes
Divide a⁴-16 by a+2 ​

1 Answer

4 votes

Answer:


\textsf{Factored form}: \quad (a^2+4)(a-2)


\textsf{Standard form}: \quad a^3-2a^2+4a-8

Explanation:

Given expression:


(a^4-16)/(a+2)

Rewrite the exponent 4 as 2·2 and 16 as 4²:


\implies (a^(2 \cdot 2)-4^2)/(a+2)


\textsf{Apply exponent rule} \quad a^(bc)=(a^b)^c


\implies (\left(a^2\right)^2-4^2)/(a+2)


\textsf{Apply the Difference of Two Squares Formula} \quad x^2-y^2=\left(x+y\right)\left(x-y\right):


\implies ((a^2+4)(a^2-4))/(a+2)

Rewrite 4 in the second parentheses of the numerator as 2²:


\implies ((a^2+4)(a^2-2^2))/(a+2)

Apply the Difference of Two Squares Formula to (a² - 2²):


\implies ((a^2+4)(a+2)(a-2))/(a+2)

Cancel the common factor (a + 2):


\implies (a^2+4)(a-2)

Expand:


\implies a^2(a-2)+4(a-2)


\implies a^3-2a^2+4a-8

User Benoit Tremblay
by
5.0k points