The coordinates of the point that is 7/10 of the way from point A(-3, -7) to point B(10, 6) are approximately (6.1, 2.1).
Here's how the calculation is done step-by-step:
1. Calculate the difference in the x-coordinates
and y-coordinates
from A to B:
-
![\( \Delta x = B_x - A_x = 10 - (-3) = 13 \)](https://img.qammunity.org/2023/formulas/mathematics/college/obfnimnztz5267zxggyr8rdohg8g03f3me.png)
-
![\( \Delta y = B_y - A_y = 6 - (-7) = 13 \)](https://img.qammunity.org/2023/formulas/mathematics/college/rmzubt6xmyj32f2c66orbw090exbhuj4f8.png)
2. Multiply each difference by the fraction 7/10 to find the distance along the way from A to B:
-
![\( \Delta x_{\text{fraction}} = (7)/(10) * \Delta x = (7)/(10) * 13 = 9.1 \)](https://img.qammunity.org/2023/formulas/mathematics/college/9gwc72b2xpl3kifbofafn0f0ahkpw1euf0.png)
-
![\( \Delta y_{\text{fraction}} = (7)/(10) * \Delta y = (7)/(10) * 13 = 9.1 \)](https://img.qammunity.org/2023/formulas/mathematics/college/oakmuspk859xepbuhuoynbj31hzyei52ep.png)
3. Add these distances to the coordinates of A to find the coordinates of the new point:
-
![\( x = A_x + \Delta x_{\text{fraction}} = -3 + 9.1 = 6.1 \)](https://img.qammunity.org/2023/formulas/mathematics/college/7p1qfmfkxnfbbzn3nd6u2x2twtuoni9scx.png)
-
![\( y = A_y + \Delta y_{\text{fraction}} = -7 + 9.1 = 2.1 \)](https://img.qammunity.org/2023/formulas/mathematics/college/tfo7q8gxhlzoy998a64dv6lnvcu7s7jilg.png)
Therefore, the point 7/10 of the way from A to B is (6.1, 2.1).
the complete Question is given below:
Find the coordinates of the point 7/10 of the way from A to B
A(-3,-7) B(10,6)