Answer: x∈(-∞,-2√6-2)U(2√6-2,+∞)
Explanation:
![\displaystyle\\y=(1)/(4) (x+2)^2-6\\y > 0\\Hence,\\(1)/(4)(x+2)^2-6 > 0 \\\\(1)/(4)(x+2)^2-6+6 > 0+6\\\\(1)/(4)(x+2)^2 > 6\\](https://img.qammunity.org/2023/formulas/mathematics/high-school/vx4nzqjld3ttom93e1rrfc3j2w0b2ufzi6.png)
Multiply both parts of the equation by 4:
![(x+2)^2 > 24](https://img.qammunity.org/2023/formulas/mathematics/high-school/sin68y8dqfri3732t0qazrz8uqzkne6nit.png)
Extract the square root of both parts of the inequality:
![|x+2| > √(24) \\|x+2| > √(4*6) \\|x+2| > 2√(6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/nty4h46vzzo3g0mzyu219l9lrthqvutgur.png)
Expand the modulus - we get a set of inequalities:
![\displaystyle\\\left [{{x+2 > 2√(6)\ \ \ \ (1) } \atop {-(x+2) > 2√(6) \ \ \ (2)}} \right.\\](https://img.qammunity.org/2023/formulas/mathematics/high-school/f3jin4bk7xs4o0zfn321py68jqonlnoaau.png)
Multiply both parts of inequality (2) by -1 and reverse the sign of the inequality:
![\displaystyle\\\left [ {{x+2-2 > 2√(6)-2 } \atop {x+2 < -2√(6) }} \right. \ \ \ \ \ \left [ {{x > 2√(6)-2 } \atop {x+2-2 < -2√(6) -2}} \right. \ \ \ \ \ \left [ {{x > 2√(6)-2 } \atop {x < -2√(6)-2 }} \right.](https://img.qammunity.org/2023/formulas/mathematics/high-school/ztmrsh5jcdrofn7tyf0r33xpif1yat7ny7.png)
Thus,
![x\in(-\infty,-2√(6)-2)U(2√(6) -2,+\infty)](https://img.qammunity.org/2023/formulas/mathematics/high-school/7inpl97hv9ea352nmphg8h5yf9ezpntoap.png)