111k views
1 vote
What is the slope of y = 6 ^ x when x=2?

The formula for the slope is________for h close to 0 (but not equal 0)

The best estimate for the slope is_____

User Bajrang
by
8.7k points

1 Answer

6 votes


{ \qquad\qquad\huge\underline{{\sf Answer}}}

Here we go ~


\qquad \sf  \dashrightarrow \: f(x)= {6}^(x)

we need to find f'(2) = ??


\qquad \sf  \dashrightarrow \: f {}^( \prime) (x) = \displaystyle \sf \lim_(h \to0) \: \: (f(x + h) - f(x))/(h)


\qquad \sf  \dashrightarrow \: f {}^( \prime) (x) = \displaystyle \sf \lim_(h \to0) \: \: \frac{6 {}^(x + h) - 6 {}^(x) }{h}


\qquad \sf  \dashrightarrow \: f {}^( \prime) (x) = \displaystyle \sf \lim_(h \to0) \: \: \frac{6 {}^(x + h) - 6 {}^(x) }{h}


\qquad \sf  \dashrightarrow \: f {}^( \prime) (x) = \displaystyle \sf \lim_(h \to0) \: \: \frac{6 {}^(x )( 6 {}^(h) - 1)}{h}


\qquad \sf  \dashrightarrow \: f {}^( \prime) (x) =\: 6 {}^(x) \: log_(e)(6)

Now, plug in 2 for x ~


\qquad \sf  \dashrightarrow \: f {}^( \prime) (2) =\: 6 {}^(2) \sdot log_(e)(6)


\qquad \sf  \dashrightarrow \: f {}^( \prime) (2) =\: 36 \sdot (1.79)


\qquad \sf  \dashrightarrow \: f {}^( \prime) (2) =64.44

User Chris DeSalvo
by
9.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories