60.1k views
0 votes
What is the slope of y = log(x) when x=20 ?

The formula for the slope is _________ for h close to 0 (but not equal )

The best estimate for the slope is____

1 Answer

5 votes


{ \qquad\qquad\huge\underline{{\sf Answer}}}

The formula for slope according to first principle is :


\qquad \sf  \dashrightarrow \: \[ \displaystyle\lim_(x\to0) \: \: \sf (f(x + h) - f(x))/(h) \]


\qquad \sf  \dashrightarrow \: \[ \displaystyle\lim_(x\to0) \: \: \sf ( log(x + h) - log(x))/(h) \]


\qquad \sf  \dashrightarrow \: \[ \displaystyle\lim_(x\to0) \: \: \sf ( log( (x + h)/(x) ) )/(h) \]


\qquad \sf  \dashrightarrow \: \[ \displaystyle\lim_(x\to0) \: \: \sf ( log( ( h)/(x) + 1 ) )/(h) \]


\qquad \sf  \dashrightarrow \: \[ \displaystyle\lim_(x\to0) \: \: \sf ( log( ( h)/(x) + 1 ) )/( (h)/(x) * x) \]


\qquad \sf  \dashrightarrow \: \[ \displaystyle\lim_(x\to0) \: \: \sf (1)/(x) \bigg(( log_(e) ( ( h)/(x) + 1 ) )/( (h)/(x) * log_(e)(10) ) \] \bigg)


\qquad \sf  \dashrightarrow \: \[ (1)/(x \: log_(e)(10) ) \displaystyle\lim_(x\to0) \: \: \sf \bigg(( log_(e) ( ( h)/(x) + 1 ) )/( (h)/(x) ) \] \bigg)


\qquad \sf  \dashrightarrow \: \[ (1)/(x \: log_(e)(10) )

Now, the best estimate of slope is at x = 20 :


\qquad \sf  \dashrightarrow \: \[ (1)/(20* 2.303)


\qquad \sf  \dashrightarrow \: \[ (1)/(46.06)


\qquad \sf  \dashrightarrow \: \approx0.0217

User Luke Prior
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories