Answer:
Range:
![\:f\left(x\right)\ge \:-(68)/(11)](https://img.qammunity.org/2023/formulas/mathematics/high-school/nvokx7egxzqwc1uiyogylmncg1w9y0uqnm.png)
Interval notation
![[-(68)/(11),\:\infty \:)](https://img.qammunity.org/2023/formulas/mathematics/high-school/9v45ksqihpw9vsunq0z1849xlv2bxwvx1x.png)
Explanation:
I got a little confused with the x - 1/2x^2 term and I am taking to to be:
. If this is incorrect please mention the correct term in your comment and I will edit this post. Or you can re-post the question
We have
![f\left(x\right)=6x^2+x\:-(1)/(2)x^2+\:x\:-\:6](https://img.qammunity.org/2023/formulas/mathematics/high-school/yrjfjpd9ngticfzhc3h3sgy957xj7geovc.png)
Simplify by grouping like terms:
![=-(1)/(2)x^2+6x^2+x+x-6](https://img.qammunity.org/2023/formulas/mathematics/high-school/yr0ox6tdj77ltdr9gknybcbeyhlibnts25.png)
![= (1)/(2)x^2+6x^2+2x-6](https://img.qammunity.org/2023/formulas/mathematics/high-school/r0dh2gktab37sca4o3g5afja3f4mdfvpx2.png)
Add similar elements
![-(1)/(2)x^2+6x^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/dxjyfaslw5mo91p8gbkbzrju6ouy9k2swr.png)
So the original function expression becomes
![y=(11)/(2)x^2+2x-6](https://img.qammunity.org/2023/formulas/mathematics/high-school/11d188wm129s1306zqkwf36fdyhx61lr7y.png)
This is the equation of a parabola which in standard form is
![ax^2 + bx + c](https://img.qammunity.org/2023/formulas/mathematics/high-school/z8m0v0czh59txjzy4rh49c7hvnwc33gzxd.png)
Here
![a=(11)/(2),\:b=2,\:c=-6](https://img.qammunity.org/2023/formulas/mathematics/high-school/ok6izjsg5atusmnjha1qyshkjiyw333m44.png)
We can compute the vertex of this parabola using the fact that the x, y coordinates of the vertex are given by
![x_v =-(b)/(2a)](https://img.qammunity.org/2023/formulas/mathematics/high-school/9ykess3zwwjx9ttwth0jhxzafvq8blkb22.png)
Plugging in values for b and a give us
![x_v =-(b)/(2a) = -(2)/(2\left((11)/(2)\right)) =-(2)/(11)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ko7c7xunivzvt3znpsntsq8zu4m12fjma1.png)
Plugging in this value of
into the parabola equation will give the value for
which is the function value at the vertex
Plug in
t find the
value:
![y_v=(11\left(-(2)/(11)\right)^2)/(2)+2\left(-(2)/(11)\right)-6](https://img.qammunity.org/2023/formulas/mathematics/high-school/9asunkcrfz5yzdra26r8tx8ebqk51mlykv.png)
Simplify
![(11\left(-(2)/(11)\right)^2)/(2) =(2)/(11)](https://img.qammunity.org/2023/formulas/mathematics/high-school/pfq49tajcdph4q3z7t9umwbeqw5hn4tnpy.png)
![2\left(-(2)/(11)\right) = -(4)/(11)](https://img.qammunity.org/2023/formulas/mathematics/high-school/diwa4xsfo8eyhmm2rtnr978lf2r383ngmt.png)
Combining the terms we get
![= -(68)/(11)](https://img.qammunity.org/2023/formulas/mathematics/high-school/pcix70cr7fur203m9zmvbhio3g5pls4v23.png)
![\left(-(2)/(11),\:-(68)/(11)\right)](https://img.qammunity.org/2023/formulas/mathematics/high-school/j5b32e9ttc0kun3ao22jkb0f08p639cfel.png)
For a parabola of the form
with vertex
![\left(x_v,\:y_v\right)](https://img.qammunity.org/2023/formulas/mathematics/high-school/w4enc2i0nexxyi5ws9pbjf0l11qe9twmny.png)
![\circ \;\mathrm{If}\:a < 0\:\mathrm{the\:range\:is}\:f\left(x\right)\le \:y_v](https://img.qammunity.org/2023/formulas/mathematics/high-school/3iba1c4t0hfke2i0za4ecwqx2voux4lsq1.png)
![\circ \;\mathrm{If}\:a > 0\:\mathrm{the\:range\:is}\:f\left(x\right)\ge \:y_v](https://img.qammunity.org/2023/formulas/mathematics/high-school/lm9wmag4ugkzv3o0sc4f824aadkat8es0u.png)
Here
so the range is
![f\left(x\right)\ge \:-(68)/(11)](https://img.qammunity.org/2023/formulas/mathematics/high-school/2l7fcoh99wjdm2n897srvomeh3haxglvtk.png)
Answer range of f(x) is
![f\left(x\right)\ge \:-(68)/(11)](https://img.qammunity.org/2023/formulas/mathematics/high-school/2l7fcoh99wjdm2n897srvomeh3haxglvtk.png)
In interval notation it is
![[-(68)/(11),\:\infty \:)](https://img.qammunity.org/2023/formulas/mathematics/high-school/9v45ksqihpw9vsunq0z1849xlv2bxwvx1x.png)
It is much easier if you visualize it in a graph
Hope that helps