58.1k views
2 votes
Let
\rm|M| denote the determinant of a square matrix M. Let
\rm g : \bigg[0, (\pi)/(2) \bigg] \to \mathbb{R} be the function defined by
\rm g( \theta) = √(f( \theta) - 1) + \sqrt{f \bigg( (\pi)/(2) - \theta\bigg) - 1} where


\rm f( \theta) = (1)/(2) \left| \begin{matrix} 1& \sin( \theta) &1 \\ - \sin( \theta) &1& \sin( \theta) \\ - 1& - \sin( \theta)&1 \end{matrix} \right | + \left| \begin{matrix} \sin(\pi) & \cos( \theta + (\pi)/(4) ) & \tan( \theta - (\pi)/(4) ) \\ \sin( \theta - (\pi)/(4) ) & - \cos( \frac{\pi}2 ) & \log_(e) ( \frac{4}\pi ) \\ \cot( \theta + (\pi)/(4) ) & \log_(e) ( \frac{\pi}4 )& \tan(\pi) \end{matrix} \right |
Let p(x) be a quadratic polynomial whose roots are the maximum and minimum values of the function g(
\theta) , and p(2)=2-
√(2). Then which of the following is True?


\rm(1) \: p \bigg( (3 + √(2) )/(4) \bigg) < 0 \\ \rm(2) \: p \bigg( (1 + 3 √(2) )/(4) \bigg) > 0 \\ \rm(3) \: p \bigg( (5√(2) - 1 )/(4) \bigg) > 0 \\ \rm(4) \: p \bigg( (5 - √(2) )/(4) \bigg) < 0



Let \rm|M| denote the determinant of a square matrix M. Let \rm g : \bigg[0, (\pi-example-1

1 Answer

6 votes

The second matrix in the definition of
f is singular, since


\sin(\pi) = -\cos\left(\frac\pi2\right) = \tan(\pi) = 0


\cos\left(\theta+\frac\pi4\right) = \sin\left(\frac\pi2 - \left(\theta+\frac\pi4\right)\right) = \sin\left(\frac\pi4-\theta\right)=-\sin\left(\theta-\frac\pi4\right)


\cot\left(\theta+\frac\pi4\right) = \tan\left(\frac\pi2 - \left(\theta+\frac\pi4\right)\right) = \tan\left(\frac\pi4 - \theta\right) = -\tan\left(\theta-\frac\pi4\right)


\ln\left(\frac4\pi\right) = -\ln\left(\frac\pi4\right)

In other words, it's antisymmetric;
A^\top=-A. It's easy to show that
\det(A)=0 if
A is 3x3 and antisymmetric.

The other determinant reduces to


\begin{vmatrix}1 &amp; \sin(\theta) &amp; 1 \\ - \sin(\theta) &amp; 1 &amp; \sin(\theta) \\ -1 &amp; -\sin(\theta) &amp; 1 \end{vmatrix} = 2 + 2\sin^2(\theta)

Hence


f(\theta) = 1 + \sin^2(\theta) \implies f\left(\frac\pi2\right) = 1 + \cos^2(\theta)

With
g defined on
\left[0,\frac\pi2\right], both
\sin(\theta) and
\cos(\theta) are non-negative. So


g(\theta) = √(f(\theta)-1) + √(f\left(\frac\pi2-\theta\right)-1) \\\\ ~~~~ = √(\sin^2(\theta)) + √(\cos^2(\theta)) \\\\ ~~~~ = |\sin(\theta)| + |\cos(\theta)| \\\\ ~~~~ = \sin(\theta) + \cos(\theta) \\\\ ~~~~ = \sqrt2\,\sin\left(\theta + \frac\pi4\right)

which is maximized at
t=\frac\pi4 with a value of
\sqrt2\,\sin\left(\frac\pi2\right)=\sqrt2, and minimized at
t=0 and
t=\frac\pi2 with a value of
\sqrt2\,\sin\left(\frac{3\pi}4\right)=1.

Edit: The rest of my answer wouldn't fit. Continued in attachment.

Let \rm|M| denote the determinant of a square matrix M. Let \rm g : \bigg[0, (\pi-example-1
User Lorelle
by
3.6k points