186k views
2 votes
In the triangle below, If Sin B =5/13, Find the Tan A

In the triangle below, If Sin B =5/13, Find the Tan A-example-1
User Court
by
7.9k points

1 Answer

3 votes

Answer: tgA=12/5

Explanation:


\displaystyle\\0^0 < B < 90^0\\sin^2B+cos^2B=1\\sin^2B+cos^2B-sin^2B=1-sin^2B\\cos^2B=1-sin^2B\\cos^2B=1-((5)/(13))^2\\\\cos^2B=1-(5^2)/(13^2) \\\\cos^2B=1-(25)/(169) \\\\cos^2B=(1*169-25)/(169) \\\\cos^2B=(144)/(169)\\\\√(cos^2B) =\sqrt{(144)/(169) } \\\\cosB=б\sqrt{(12^2)/(13^2) } \\\\cosB=б\sqrt{((12)/(13))^2 } \\\\cosB=б(12)/(13) \\\\As,\ 0^0 < B < 90^0\\\\cosB=(12)/(13) \\\\


\displaystyle\\tgB=(sinB)/(cosB)\\\\ tgB=((5)/(13) )/((12)/(13) ) \\\\tgB=(5)/(12) \\\\tgA=tg(90^0-tgB)\\\\tgA=ctgB\\\\tgA=(1)/(tgB) \\\\tgA=(1)/((5)/(12) )\\\\ tgA=(12)/(5)

User Jdross
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories