Answer:
C) ΔRST ~ ΔMNP
Explanation:
Similar triangles:
Here, the two triangles are similar by AAA similarity.
In ΔRST,
∠S + 90 + 61 = 180 {Angle sum property of triangle}
∠S = 180 - 151
∠S = 29°
In ΔMNP,
∠P = 180 - (90 + 29) {Angle sum property of Δ}
= 180 - 119
= 61°
In both triangles,
∠R ≅ ∠M = 90°
∠S ≅ ∠N = 29°
∠T ≅ ∠P = 61°
ΔRST and ΔMNP are similar triangles by AAA similarity.