279,541 views
34 votes
34 votes
Let z be any non zero complex number. Express 1/z in the form a+ib.​

User Serpentarius
by
3.5k points

1 Answer

9 votes
9 votes

let z be a complex number and z = x + iy

now, let's solve for 1/z


  • (1)/(z)


  • (1)/(x + iy)


  • (1)/(x + iy) * ( x - iy)/(x - iy)


  • \frac{x - iy}{ {x}^(2) - {i}^(2)y {}^(2) }


  • \frac{x - iy}{ {x}^(2) + {y}^(2) }


  • \frac{x}{ {x}^(2) + {y}^(2) } + i \frac{ - y}{ {x}^(2) + {y}^(2) }

now, we can compare it with general form, where


  • a = \frac{x}{ {x}^(2) + {y}^(2) }


  • b = \frac{ - y}{ {x}^(2) + {y}^(2) }

In general form :


  • \frac{x}{ {x}^(2) + {y}^(2) } + i \frac{ - y}{ {x}^(2) + {y}^(2) }
User Anthony Tsivarev
by
2.8k points