123k views
4 votes
For
\rm x \in \mathbb{R}, let the function y(x) be the solution of the differential equation


\rm (dy)/(dx) + 12y = \cos \bigg( (\pi)/(12)x \bigg ) , \: \: \: \: y(0) = 0 \\
Then, which of the following statements is/are TRUE?

(A) y(x) is an increasing function

(B) y(x) is a decreasing function

(C) There exists a real number β such that the line y = β intersects the curve y = y(x) at infinitely many points

(D) y(x) is a periodic function


1 Answer

3 votes

In the differential equation


(dy)/(dx) + 12y = \cos\left((\pi x)/(12)\right)

multiply on both sides by the integrating factor


\mu = \exp\left(\displaystyle\int12\,dx\right) = e^(12x)

Then the left side condenses to the derivative of a product.


e^(12x) (dy)/(dx) + 12 e^(12x) y = e^(12x) \cos\left((\pi x)/(12)\right)


(d)/(dx)\left[e^(12x)y\right] = e^(12x)\cos\left((\pi x)/(12)\right)

Integrate both sides with respect to
x, and use the initial condition
y(0)=0 to solve for the constant
C.


\displaystyle \int (d)/(dx) \left[e^(12x)y\right] \, dx = \int e^(12x) \cos\left((\pi x)/(12)\right) \, dx

As an alternative to integration by parts, recall


e^(ix) = \cos(x) + i \sin(x)

Now


e^(12x) \cos\left((\pi x)/(12)\right) = e^(12x) \mathrm{Re}\left(e^(i\pi x/12)\right) = \mathrm{Re}\left(e^((12+i\pi/12)x)\right)


\displaystyle \int \mathrm{Re}\left(e^((12+i\pi/12)x)\right) \, dx = \mathrm{Re}\left(\int e^((12+i\pi/12)x) \, dx\right)


\displaystyle. ~~~~~~~~ = \mathrm{Re}\left(\frac1{12+i\frac\pi{12}} e^((12+i\pi/12)x)\right) + C


\displaystyle. ~~~~~~~~ = \mathrm{Re}\left(\frac{12 - i\frac\pi{12}}{12^2 + (\pi^2)/(12^2)} e^(12x) \left(\cos\left((\pi x)/(12)\right) + i \sin\left((\pi x)/(12)\right)\right)\right) + C


\displaystyle. ~~~~~~~~ = (12)/(12^2 + (\pi^2)/(12^2)) e^(12x) \cos\left((\pi x)/(12)\right) + \frac\pi{12} e^(12x) \sin\left((\pi x)/(12)\right) + C


\displaystyle. ~~~~~~~~ = \frac1{12(12^4+\pi^2)} e^(12x) \left(12^4 \cos\left((\pi x)/(12)\right) + \pi (12^4+\pi^2) \sin\left((\pi x)/(12)\right)\right) + C

Solve for
y.


\displaystyle e^(12x) y = \frac1{12(12^4+\pi^2)} e^(12x) \left(12^4 \cos\left((\pi x)/(12)\right) + \pi (12^4+\pi^2) \sin\left((\pi x)/(12)\right)\right) + C


\displaystyle y = \frac1{12(12^4+\pi^2)} \left(12^4 \cos\left((\pi x)/(12)\right) + \pi (12^4+\pi^2) \sin\left((\pi x)/(12)\right)\right) + C

Solve for
C.


y(0)=0 \implies 0 = \frac1{12(12^4+\pi^2)} \left(12^4 + 0\right) + C \implies C = -(12^3)/(12^4+\pi^2)

So, the particular solution to the initial value problem is


\displaystyle y = \frac1{12(12^4+\pi^2)} \left(12^4 \cos\left((\pi x)/(12)\right) + \pi (12^4+\pi^2) \sin\left((\pi x)/(12)\right)\right) - (12^3)/(12^4+\pi^2)

Recall that


R\cos(\alpha-\beta) = R\cos(\alpha)\cos(\beta) + R\sin(\alpha)\sin(\beta)

Let
\alpha=(\pi x)/(12). Then


\begin{cases} R\cos(\beta) = 12^4 \\ R\sin(\beta) = 12^4\pi+\pi^3 \end{cases} \\\\ \implies \begin{cases} (R\cos(\beta))^2 + (R\sin(\beta))^2 = R^2 = 12^8 + (12^4\pi + \pi^3)^2 \\ (R\sin(\beta))/(R\cos(\beta))=\tan(\beta)=\pi+(\pi^3)/(12^4)\end{cases}

Whatever
R and
\beta may actually be, the point here is that we can condense
y into a single cosine expression, so choice (D) is correct, since
\cos(x) is periodic. This also means choice (C) is also correct, since
\beta=\cos(x)\implies\beta=\cos(x+2n\pi) for infinitely many integers
n. This simultaneously eliminates (A) and (B).

User Daniel Coffman
by
5.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.