203k views
4 votes
−2x+3y−z=−23x+y=4−2y+2z=4

Enter your answer, in the form (x,y,z), in the boxes in simplest terms.

1 Answer

5 votes

Answer:


(x,y,z)=\left(-(1)/(11),(21)/(11),(21)/(11)\right)

Explanation:

Given:


-2x+3y-z=-23x+y=4-2y+2z=4

Therefore:


\begin{cases}-2x+3y-z=4\\-23x+y=4\\4-2y+2z=4\end{cases}

Rewrite Equation 2 to make x the subject:


\implies -23x+y=4


\implies -23x+y-y=4-y


\implies -23x=4-y


\implies (-23x)/(-23)=(4)/(-23)-(y)/(-23)


\implies x=-(4)/(23)+(y)/(23)

Rewrite Equation 3 to make z the subject:


\implies 4-2y+2z=4


\implies 4-2y+2z-4=4-4


\implies -2y+2z=0


\implies -2y+2z+2y=0+2y


\implies 2z=2y


\implies (2z)/(2)=(2y)/(2)


\implies z=y

Substitute the found expressions for y and z into Equation 1 and solve for y:


\implies -2x+3y-z=4


\implies -2\left(-(4)/(23)+(y)/(23)\right)+3y-y=4


\implies (8)/(23)-(2)/(23)y+2y=4


\implies (8)/(23)+(44)/(23)y=4


\implies (8)/(23)+(44)/(23)y- (8)/(23)=4- (8)/(23)


\implies (44)/(23)y=(84)/(23)


\implies (44)/(23)y \cdot (23)/(44)=(84)/(23)\cdot (23)/(44)


\implies y=(84)/(44)


\implies y=(21)/(11)

Therefore, as y = z:


\implies z=(21)/(11)

Substitute the found value of y into the found expression for x and solve for x:


\implies x=-(4)/(23)+(y)/(23)


\implies x=-(4)/(23)+((21)/(11))/(23)


\implies x=-(4)/(23)+(21)/(253)


\implies x=-(1)/(11)

Therefore, the final solution is:


(x,y,z)=\left(-(1)/(11),(21)/(11),(21)/(11)\right)

User Gil Peretz
by
3.4k points