234k views
2 votes
The function f(x) is an unshifted exponential function which goes through the points (2,5) and (3,4).

A. what is the equation for f(x)
B. Find f(10) and f(100)

User Avi Meir
by
3.5k points

1 Answer

1 vote


f(x) = ae {}^(bx) \\ f(2) = 5 \: \: \: \: \: f(3) = 4


5 = ae {}^(2b) \: \: \: \: \: \: \: 4 = ae {}^(3b) \\ divide \: both \: systems \\ e {}^(b) = (4)/(5) \: \: \: \: so \: \: \: b = ln(0.8) \\ solving \: for \: a \: we \: get \: that \: a = (125)/(16)


f(x) = (125)/(16) e {}^(ln(0.8)x)


f(10) = (125)/(16) e {}^(10ln(0.8)) = (65536)/(78125) \approx0.838861 \\ f(100) = (125)/(16) e {}^(100ln(0.8)) = \frac{4 {}^(98) }{5 {}^(97) } \approx1.59 * 10 {}^( - 9)

User ScottyBlades
by
3.2k points