200k views
4 votes
Let
\rm\hat{i}, \hat{j} \: and \: \hat{k} be the unit vector along the three positive coordinate axes. Let
\rm\overset{ \to}a = 3 \hat{i} + \hat{j} - \hat{k} ,\\ \rm \overset{ \to}b = \hat{i} + b_(2) \hat{j} + b_3\hat{k}, \: \: \: \: \: \: \: b_(2), b_(3) \in \mathbb{R}, \\ \rm\overset{ \to}c= c_(1) \hat{i} + c_(2) \hat{j} + c_3\hat{k}, \: \: \: \: \:c_(1),c_(2), c_(3) \in \mathbb{R}

be three vectors such that
\rm b_2b_3 > 0, \overset{ \to}a \cdot\overset{ \to}b = 0 and
\left(\begin{gathered} 0& \rm - c_(3) & \rm c_(2) \\ \rm c_(3)& \rm 0 & \rm - c_(1) \\ \rm - c_(2)& \rm c_(1) & \rm 0 \end{gathered} \right) \left(\begin{gathered} 1 \\ \rm b_(2) \\ \rm b_3\end{gathered} \right) = \left(\begin{gathered} \rm3 - c_(1) \\ \rm 1 - c_(2) \\ \rm - 1 - c_3\end{gathered} \right)
Then which of the following is true


\rm(1) \: \overset{ \to}a \cdot\overset{ \to}c = 0 \\ \rm(2) \: \overset{ \to}b \cdot\overset{ \to}c = 0 \\ (3) \: \overset{ \to} > √(10) \\(4) \: \overset{ \to} \rm c \leq √(11)

Let \rm\hat{i}, \hat{j} \: and \: \hat{k} be the unit vector along the three positive-example-1

1 Answer

5 votes

Computing the matrix product in the last condition gives a system of linear equations in the components of
\vec c,


\begin{cases} c_1 + b_3c_2 - b_2c_3 = 3 \\ -b_3c_1 + c_2 + c_3 = 1 \\ b_2c_1 - c_2 + c_3 = -1 \end{cases}

and is easily solvable to get


c_1 = \frac{6-2b_3}{2+{b_2}^2+{b_3}^2}, c_2 = \frac{2+3b_3}{2+{b_2}^2+{b_3}^2}, c_3 = \frac{9-3b_3}{2+{b_2}^2+{b_3}^2}

or, using the condition
\vec a\cdot\vec b = 3 + b_2 - b_3 = 0,


c_1 = -\frac{2b_2}{11 + 6b_2 + 2{b_2}^2}, c_2 = \frac{11+3b_2}{11+6b_2+2{b_2}^2}, c_3 = -\frac{3b_2}{11+6b_2+2{b_2}^2}

• (1) is false, since


\vec a \cdot \vec c = \frac{11}{2 + {b_2}^2 + {b_3}^2} \\eq 0

because
{b_2}^2+{b_3}^2\ge0 \implies 0<\vec a\cdot\vec c\le\frac{11}2.

(2) is true.


\vec b\cdot \vec c = \frac{(3 + b_2 - b_3) (2 + 3b_3)}{2 + {b_2}^2 + {b_3}^2} = \frac{(\vec a\cdot\vec b)(2+3b_3)}{2+{b_2}^2+{b_3}^2} = 0

• (3) is false. The magnitude of
\vec b could be smaller than √10.

Since
\vec a\cdot\vec b=0, we have


\|\vec b\| = \sqrt{1 + {b_2}^2 + (3+b_2)^2} = \sqrt{10 + 6b_2 + 2{b_2}^2}

and


2{b_2}^2 + 6b_2 = 2\left({b_2}^2 + 3b_2 + \frac94\right) - \frac{18}4 = 2\left(b_2 + \frac32\right)^2 - \frac92 \ge - \frac92

which is to say,
\|\vec b\| \ge √(10-\frac92) = \sqrt{\frac{11}2}.

(4) is true.

We have


\|\vec c\| = \frac{√(11) \sqrt{11 - 6b_3 + 2{b_3}^2}}{2 + {b_2}^2 + {b_3}^2}

In terms of
b_2 alone,


\|\vec c\| = \frac{√(11)\sqrt{11 + 6b_2 + 2{b_2}^2}}{11+6b_2+2{b_2}^2} = \frac{√(11)}{\sqrt{11+6b_2+2{b_2}^2}}

Now,


11 + 6b_2 + 2{b_2}^2 = 2\left(b_2+\frac32\right)^2 + \frac{13}2 \ge \frac{13}2

which means


\|\vec c\| \le \frac{√(11)}{\sqrt{11 + \frac{13}2}} \le √(11)

User Kevin Yin
by
4.8k points