61.1k views
2 votes
Find the area under the curve

y = f(x) over the stated
interval.
f(x)=3√x; [1,4]

f(x) = x-2/3; [1,27]

User Rafek
by
4.5k points

1 Answer

5 votes

Answer:

Areas under the curve


  • f\left(x\right)=3√(x),
    [1,4] : 14

  • f\left(x\right)=x-(2)/(3)\\ ,
    [1,27]:\;\;
    \bold{(1040)/(3)}

Explanation:

The area under a curve on an interval [a, b] is the integral of the function computed in this interval :
A=\int _a^b|f\left(x\right)|dx

(1) For
f\left(x\right)=3√(x) with
a=1,\:b=4

area
=\int _1^4\left3√(x)\;dx =
3\cdot \int _1^4√(x)dx =


\int √(x) =
(2)/(3)x^{(3)/(2)}


3\cdot(2)/(3)x^{(3)/(2)} =
2x^{(3)/(2)}

At
x = 4, we get
2\cdot4^{(3)/(2)} =
2\cdot8 = 16

At
x = 1, we get
2\cdot1^{(3)/(2)} =
2.1 = 2

So area under the curve for
f(x) = \:3√(x) in the interval
[1, 4] = 14

(2)
f\left(x\right)=x-(2)/(3)\\


\int \:x-(2)/(3)dx =
\int \:xdx-\int (2)/(3)dx
=(x^2)/(2)-(2)/(3)x


\left[(x^2)/(2)\right]^(27)_1 = (27^2)/(2) - (1)/(2) = (729)/(2)-(1)/(2) = (728)/(2) = 364


\left[(2)/(3)x\right]^(27)_1 = (2)/(3)\cdot \:27 - (2)/(3)\cdot \:1 = 18-(2)/(3) = (52)/(3)


\int _1^(27)\left|x-(2)/(3)\right|dx = 364-(52)/(3) = (1040)/(3) (Answer)

User Rodney Howard
by
4.5k points