197k views
1 vote
The product of all positive real values of x satisfying the equation
\sf {x}^{(16( log_(5) {x})^(3) - 68 log_(5)x) } = {5}^( - 16) is

User Drtobal
by
3.2k points

1 Answer

6 votes

Take the base-5 logarithm on both sides and simplify.


x^(16 \log^3_5(x) - 68 \log_5(x)) = 5^(-16)


\left(16 \log^3_5(x) - 68 \log_5(x)\right) \log_5(x) = -16


16 \log^4_5(x) - 68 \log^2_5(x) + 16 = 0


4 \log^4_5(x) - 17 \log^2_5(x) + 4 = 0

Factorize the left side.


\left(4 \log^2_5(x) - 1\right) \left(\log^2_5(x) - 4\right) = 0

Then


4 \log^2_5(x) - 1 = 0 \implies \log^2_5(x) = \frac14 \\\\ ~~~~~~~~ \implies \log_5(x) = \pm \frac12 \\\\ ~~~~~~~~ \implies x = \frac1{\sqrt5} \text{ or } x = \sqrt5

or


\log^2_5(x) - 4 = 0 \implies \log^2_5(x) = 4 \\\\ ~~~~~~~~ \implies \log_5(x) = \pm 2 \\\\ ~~~~~~~~ \implies x = \frac1{25} \text{ or } x = 25

and the product of these solutions is of course 1.