132k views
2 votes
P³ = 1/8 please help me if anybody can .

User Neal Fultz
by
5.0k points

2 Answers

3 votes
p would be equal to 1/2
User Korhner
by
4.9k points
5 votes

Answer:


p= (1)/(2)

Explanation:

Given equation:


p^3=(1)/(8)

Cube root both sides:


\implies \sqrt[3]{p^3}= \sqrt[3]{(1)/(8)}


\implies p= \sqrt[3]{(1)/(8)}


\textsf{Apply exponent rule} \quad \sqrt[n]{a}=a^{(1)/(n)}:


\implies p= \left((1)/(8)\right)^{(1)/(3)}


\textsf{Apply exponent rule} \quad \left((a)/(b)\right)^c=(a^c)/(b^c):


\implies p= \frac{1^{(1)/(3)}}{8^{(1)/(3)}}


\textsf{Apply exponent rule} \quad 1^a=1:


\implies p= \frac{1}{8^{(1)/(3)}}

Rewrite 8 as 2³:


\implies p= \frac{1}{(2^3)^{(1)/(3)}}


\textsf{Apply exponent rule} \quad (a^b)^c=a^(bc):


\implies p= \frac{1}{2^{(3 \cdot (1)/(3))}}

Simplify:


\implies p= \frac{1}{2^{(3)/(3)}}


\implies p= (1)/(2^(1))


\implies p= (1)/(2)

User Hyperlogic
by
4.9k points