17.4k views
5 votes
Let
I=\int\limits^4_(-2) {x^4cos(x^5+2)} \, dx. Use the substitution
u=x^5+2 to convert
I into an equivalent integral in the variable
u.

1 Answer

6 votes

If
u=x^5+2, then
du=5x^4\,dx, so the integral transforms to


\displaystyle \int_(x=-2)^(x=4) x^4 \cos(x^5+2) \, dx = \frac15 \int_(u=-30)^(u=1026) \cos(u) \, du

since


x = -2 \implies u = (-2)^5 + 2 = -32 + 2 = -30


x=4 \implies u = 4^5 + 2 = 1024 + 2 = 1026

User Arniotaki
by
8.5k points