Answer:
Explanation:
a. f(-3d) = (-3d)^2 - 2(-3d) - 8 = 9d^2 + 6d - 8
b. f(3) = (3)^2 - 2(3) - 8 = 9 - 8 - 8 = 1 - 8 = -7
c. f(2a - 1) = (2a - 1)^2 - 2(2a - 1) - 8 = 4a^2 - 4a + 1 -4a + 2 - 8 = 4a^2 - 8a - 5
d. g(5)= (2(5)+3)/(5^2 -2(5) + 1) = (10 + 3)/(25 - 10 + 1)= 13/15+1= 13/16
e. g(3x)= (2(3x) + 3))/((3x)^2 - 2(3x) + 1))= (6x + 3)/(9x^2 - 6x + 1)
f. g(-4a + 8) = (2(-4a + 8)) + 3/(-4a + 8)^2 - 2(-4a +8) +1))
(-8a + 16 + 3)/(16a^2 - 32a + 64 + 8a - 16 + 1)
(-8a + 19)/(16a^2 - 24a + 49)