Solve for
in the plane equation.
![4x + 5y + z = 7 \implies f(x,y) = z = 7 - 4x - 5y](https://img.qammunity.org/2023/formulas/mathematics/high-school/jo3xq336q7zkszjvbzitm59jn77edh7wdb.png)
Let
be the set of points in the plane
bounded by the ellipse
, i.e.
![E = \left\{(x,y) ~:~ (x^2)/(25) + (y^2)/(100) \le 1\right\}](https://img.qammunity.org/2023/formulas/mathematics/high-school/z3eamj20zr67wioctuab0cpyff24ucwz8x.png)
Then the area of the plane bounded by the elliptic cylinder is
![\displaystyle \iint_E dA = \iint_E \sqrt{1 + \left((\partial f)/(\partial x)\right)^2 + \left((\partial f)/(\partial y)\right)^2} \, dx \, dy \\\\ ~~~~~~~~ = \iint_E √(1 + (-4)^2 + (-5)^2) \, dx\, dy \\\\ ~~~~~~~~ = √(42) \iint_E dx \, dy](https://img.qammunity.org/2023/formulas/mathematics/high-school/7ngmmkoqxexrydeb1arvjctkn1tq1r7itu.png)
which is simply √42 times the area of the ellipse in the plane
. This ellipse has a minor axis of length 5 and a major axis of length 10, so its area is π•5•10 = 50π, and so the area of the plane in question is 50√42 π.
To confirm this result: In polar coordinates, with
![\begin{cases}x(r,\theta) = 5r\cos(\theta) \\ y(r,\theta) = 10r\sin(\theta) \\ (x^2)/(25)+(y^2)/(100)=r^2\end{cases}](https://img.qammunity.org/2023/formulas/mathematics/high-school/eaoykt8ldseiqywwgi236ep154haw69z63.png)
the area element is
![dA = \begin{vmatrix}(\partial x)/(\partial r)&(\partial x)/(\partial\theta) \\ (\partial y)/(\partial r) & (\partial x)/(\partial\theta)\end{vmatrix} \, dr \, d\theta \\\\ ~~~~~~~~ = \begin{vmatrix}5\cos(\theta)&-5r\sin(\theta)\\10\sin(\theta)&10r\cos(\theta)\end{vmatrix} \, dr \, d\theta \\\\ ~~~~~~~~ = \left(50r\cos^2(\theta)+50r\sin^2(\theta)\right)\,dr\,d\theta \\\\ ~~~~~~~~ = 50r \, dr \, d\theta](https://img.qammunity.org/2023/formulas/mathematics/high-school/l6mufiunyomwtngl04ff3sbl78xs01lt27.png)
The ellipse can be parameterized by
![E = \left\{(r,\theta) ~:~ 0\le\theta\le2\pi \text{ and } 0\le r\le1\right\}](https://img.qammunity.org/2023/formulas/mathematics/high-school/2anqdwkk2c3ojzxqcoo45ihev0mf0uxu34.png)
so that the integral for the area of the ellipse in the plane
is
![\displaystyle \iint_E dA = \int_0^(2\pi) \int_0^1 50r \, dr \, d\theta \\\\ ~~~~~~~~ = 100\pi \int_0^1 r \, dr \\\\ ~~~~~~~~ = 100\pi\left(\frac12-0\right) = 50\pi](https://img.qammunity.org/2023/formulas/mathematics/high-school/lwohwyqcnd0qv9pt0z277imanabpvgecsq.png)