50,782 views
20 votes
20 votes
Hey ! do anyone know how to solve this ?



Hey ! do anyone know how to solve this ? ​-example-1
User Mark Attwood
by
3.0k points

1 Answer

21 votes
21 votes

Answer:


27 \csc^6\alpha + 8 \sec^6\alpha = 250

Explanation:


10 \sin^4 \alpha + 15\cos^4 \alpha =6, \text{ find the value of } 27 \csc^6\alpha + 8 \sec^6\alpha


27 \csc^6\alpha + 8 \sec^6\alpha = (27)/( \sin^6 \alpha) + (8)/( \cos^6 \alpha)

Again, considering the identity


\boxed{ \sin ^2 x+\cos^2 x = 1}

then, we have
\sin ^2 x+\cos^2 x = 1 \iff \cos^2 x = 1 -\sin ^2 x, thus


10 \sin^4 \alpha + 15\cos^4 \alpha = 10 \sin^4 \alpha + 15(1-\sin^2 \alpha )^2

Considering
x=\sin^2 \alpha


10 \sin^4 \alpha + 15(1-\sin^2 \alpha )^2 = 10 x^2 + 15(1-x )^2

then,


10 x^2 + 15(1-x )^2 = 10x^2+15(1-2x+x^2) = 25x^2-30x+15


25x^2-30x+15=6 \iff 25x^2-30x+9=0

Solving using the quadratic equation:


x =(-(-30)\pm √((-30)^2-4\cdot 25\cdot 9))/(2\cdot 25) = (30\pm √(0))/(50)

Both roots are equal, therefore


x=(3)/(5)\implies \sin^2\alpha =(3)/(5)

Once we know the value of
\sin^2\alpha, we can find
\cos^2\alpha


\sin^2 \alpha = (3)/(5) \implies (3)/(5)+\cos^2 \alpha = 1 \iff \cos^2 \alpha = (2)/(5)

Therefore,


\sin^2\alpha =(3)/(5) \implies \sin^6\alpha =(27)/(125)


\sin^2\alpha =(2)/(5) \implies \sin^6\alpha =(8)/(125)

Finally,


(27)/((27)/(125)) + (8)/( (8)/(125)) = 125 +125 = 250

User Ryan McGeary
by
2.7k points