Answer:
x = -∛115
Explanation:
x^3 - (-115) = 0
= x^3 + 115
Factoring
(a+b) • (a^2-ab+b^2) =
a^3-a^2b+ab^2+ba^2-b^2a+b^3 =
a^3+(a^2b-ba^2)+(ab^2-b^2a)+b^3=
a^3+0+0+b^3=
a^3+b^3
(115 isn't a cube.)
Polynomial roots
P: -1, -5, -23, -115, 1, 5, 23, 115
Q: 1
P/Q: -1, -5, -23, -115, 1, 5, 23, 115
Divisor(s): None
In these sets of data, there are no rational roots shown.
Step-by-step explanation(part 2):
x^3 + 115 = 0
x^3 = -115
x = ∛-115
Negative numbers will always have real cube roots.
∛ -115 = ∛ -1 × 115 = ∛ -1 × ∛ 115 = (-1) × ∛ 115
Therefore,
x = -∛115