102k views
0 votes
Дробово раціональне рівняння

(x+1)/(x-2)-(x-3)/(x+2)=0

User Niraj Paul
by
3.1k points

1 Answer

1 vote

Answer:


x=(1)/(2) or 0.5 in decimal form

Explanation:

The expression is
(x+1)/(x-2)-(x-3)/(x+2)=0

Find Least Common Multiplier (LCM) of the denominators
x-2,\:x+2

This is
(x-2)(x+2) the product of the two denominators

Multiply entire equation by this LCM:
(x-2)(x+2)

We get


(x+1)/(x-2)\left(x-2\right)\left(x+2\right)-(x-3)/(x+2)\left(x-2\right)\left(x+2\right)=0\cdot \left(x-2\right)\left(x+2\right)

Simplify the first term


(x+1)/(x-2)\left(x-2\right)\left(x+2\right)
=\left(x+1\right)\left(x+2\right)

Simplify the second term


-(x-3)/(x+2)\left(x-2\right)\left(x+2\right) =\quad -\left(x-3\right)\left(x-2\right)

RHS is
0

Therefore we get


\left(x+1\right)\left(x+2\right)-\left(x-3\right)\left(x-2\right)=0

Expand the first term using the FOIL method
(x+a) (x + b) = x^2 + ax + bx + ab

Here a = 1, b = 2. So
(x+1)(x+2) = x^2 + 2x + 1x + (1)(2) = x^2 + 3x + 2


\left(x+1\right)\left(x+2\right)
=x^2+3x+2

Expanding
-\left(x-3\right)\left(x-2\right) gives us
-x^2 + 5x - 6

(Use the FOIL method:
(x+b) (x + a) = x^2 + ax + bx + ab Here a = -2, b = -3. Note there is a negative sign before the entire expression)

So the original expression is


x^2+3x+2-x^2+5x-6 = 0

Collecting like terms


x^2-x^2 + 3x +5x + 2 - 6
= 8x -4 =
0

Add 4 to both sides


8x-4+4=0+4


8x=4

Divide both sides by 8:


(8x)/(8)=(4)/(8)


x=(1)/(2) or
0.5 in decimal

User Masoud Maleki
by
3.4k points