152k views
0 votes
Ans : 27.......................


\frac{(243 {)}^(2n/5) . {3}^(2n + 1) }{ {9}^(n + 1). {3}^(2(n - 2)) } \\

please give step by step explanation...


User Mrchief
by
7.4k points

2 Answers

4 votes


{ \qquad\qquad\huge\underline{{\sf Answer}}}

Here we go ~


\qquad \sf  \dashrightarrow \: \frac{((243 {)}^(2n/5) ) \sdot( {3}^(2n + 1)) }{ ({9}^(n + 1)) \sdot( {3}^(2(n - 2)) )}


\qquad \sf  \dashrightarrow \: \frac{(3{)}^(5(2n/5)) ) \sdot( {3}^(2n + 1)) }{ ({3 }^(2(n + 1))) \sdot( {3}^(2(n - 2)) )}


\qquad \sf  \dashrightarrow \: \frac{(3{)}^(2n) \sdot( {3}^(2n + 1)) }{ ({3 }^((2n + 2))) \sdot( {3}^((2n - 4)) )}

let's break it up :


  • \sf  3 {}^(2n) = (3 {}^(2n -4) ) \sdot(3 {}^(4) )

  • \sf  3 {}^((2n + 1)) = (3 {}^(2n -4) ) \sdot(3 {}^(5) )

  • \sf  3 {}^((2n + 2)) = (3 {}^(2n -4) ) \sdot(3 {}^(6) )

now let's take
{ \sf {3}^((2n-4))} common here ~


\qquad \sf  \dashrightarrow \: \frac{(3{)}^((2n - 4)) (3 {}^(4) \sdot{3}^(5)) }{ {(3 )}^((2n - 4))(3 {}^(6) \sdot1)}


\qquad \sf  \dashrightarrow \: \frac{{} (3 {}^(4) \sdot{3}^(5)) }{ (3 {}^(6) \sdot1)}


\qquad \sf  \dashrightarrow \: \frac{{} 3 {}^(9) }{ 3 {}^(6) }


\qquad \sf  \dashrightarrow \: 3 {}^(3)


\qquad \sf  \dashrightarrow \: 27

User Dquijada
by
8.7k points
4 votes

Answer:

  • 27

Explanation:


\sf \cfrac{243^{(2n)/(5)}\cdot \:3^(2n+1)}{9^(n+1)\cdot \:3^(2\left(n-2\right))}


\sf 9^(n+1)\cdot \:3^(2\left(n-2\right))

Simplify:-


  • \sf 3^(4n-2)


\sf \cfrac{3^(2n)\cdot \:3^(2n+1)}{\boxed{\bf 3^(4n-2)}}

Now, Factor:-


  • \sf 243^{(2n)/(5)}

  • = \boxed{\bf 3^(2n)}


\sf \cfrac{3^(2n)\cdot \:3^(2n+1)}{3^(4n-2)}

Now, let's simplify:-


  • \sf \cfrac{3^(2n)}{3^(4n-2)}

  • =\boxed{\bf 3^(-2n+2)}

  • \sf 3^(-2n+2)\cdot \:3^(2n+1)

Simplify:-


  • \sf 3^(-2n+2)\cdot \:3^(2n+1)

Apply the exponent rule:-


  • \sf 3^(-2n+2+2n+1)

  • \sf 3^3

  • \sf 27

Therefore, your answer is 27.

______________________

Hope this helps!

Have a great day!

User Nilesh Kumar
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories