Answer: f'(x)=6x
Explanation:
f'(x)= lim (h->0) [f(x+h) - f(x)] /h
f'(x)= lim (h->0) [3(x+h)^2 + 1 - (3x^2 + 1)] /h
f'(x)= lim (h->0) [3(x^2+2hx+h^2) + 1 - 3x^2 - 1] /h
f'(x)= lim (h->0) [3x^2+6hx+3h^2 - 3x^2] /h
f'(x)= lim (h->0) [6hx+3h^2] /h
f'(x)= lim (h->0) [6x+3h]
f'(x)= [6x+3(0)]
f'(x)=6x