209k views
2 votes
Please help with this question, thank you!!​

Please help with this question, thank you!!​-example-1

2 Answers

4 votes

Answer:


-√(2)

Explanation:

Note that:


a^2-2ab+b^2=(a-b)^2 = 4ab \\ \\ a^2 + 2ab+b^2 = (a+b)^2 = 8ab \\ \\ \implies (a+b)/(a-b)=(√(8ab))/(-√(4ab))=-√(2)

User MisterXero
by
7.9k points
4 votes

Answer:


\sf (a+b)/(a-b)= -√(2)

Explanation:


\sf a^2 + b^2 = 6ab \qquad where\:\:0 < a < b

Basic formula:


\sf (a + b)^2 = a^2 +b^2 +2ab


\sf (a - b)^2 = a^2 + b^2 -2ab

solve for a + b


\sf \rightarrow a^2 + b^2 = 6ab


\sf \rightarrow (a+b)^2-2ab = 6ab


\sf \rightarrow (a+b)^2 = 6ab+2ab


\sf \rightarrow (a+b)^2 = 8ab


\sf \rightarrow a+b = \pm √(8ab)

solve for a - b


\sf \rightarrow a^2 + b^2 = 6ab


\sf \rightarrow (a-b)^2 + 2ab = 6ab


\sf \rightarrow (a-b)^2 = 6ab-2ab


\sf \rightarrow (a-b)^2 = 4ab


\sf \rightarrow a-b = \pm √(4ab)

Now solve for (a + b)/(a - b)


\sf \rightarrow (a+b)/(a-b)= (\pm√(8ab) )/(\pm√(4ab) )


\sf \rightarrow (a+b)/(a-b)= \pm \sqrt(8ab )/(4ab)


\sf \rightarrow (a+b)/(a-b)= \pm √(2)

As, the value of b is greater than the value of a and both the values a and b are greater than 0. It turns the value of expression negative as the denominator will be always evaluated to negative integer and the numerator value always > 0. So, the answer will be negative, -√2.


\sf \rightarrow (a+b)/(a-b)= - √(2)

User Nickgroenke
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories