234k views
0 votes
If tan a = x + 1 and tan ß = x - 1, then verify that: 2cot(a - B) = x²​

2 Answers

4 votes


</p><p>\cot(a-b)=((1)/((x+1)(x-1))+1)/((1)/(x-1)+(1)/(x+1)) \\ \\ =(1-1+x^2)/(2) \\ \\ =(x^2)/(2) \\ \\ \therefore 2\cot(A-B)=x^2

If tan a = x + 1 and tan ß = x - 1, then verify that: 2cot(a - B) = x²​-example-1
User TootsieRockNRoll
by
3.1k points
4 votes

Answer:

See below for proof.

Explanation:


\boxed{\begin{minipage}{5 cm}\underline{Trigonometric Identities}\\\\$\cot \theta=(1)/(\tan \theta)$\\\\$\tan (A \pm B)=(\tan A \pm \tan B)/(1 \mp \tan A \tan B)$\\\end{minipage}}


\begin{aligned}\implies 2\cot (\alpha - \beta) &amp; =(2)/(\tan (\alpha - \beta))\\\\ &amp; =(2)/(( \tan \alpha - \tan \beta)/(1+\tan \alpha \tan \beta))\\\\ &amp; =(2(1+\tan \alpha \tan \beta))/( \tan \alpha - \tan \beta)\\\\ &amp; =(2(1+(x+1)(x-1)))/( (x+1) - (x-1))\\\\&amp; = (2(1+(x^2-x+x-1)))/(x+1-x+1)\\\\&amp; = (2(1+(x^2-1)))/(2)\\\\&amp; = (2x^2)/(2)\\\\&amp; = x^2\end{aligned}

Hence verifying that 2cot(α - β) = x².

User Gvalmon
by
3.6k points