Answer:
x = 26.244
Explanation:
Let the angle opposite the side of length 15 be A and the angle opposite the side with length 18 be B
if a is the side with length 18 and b is the side with length 15
then the relationship between the two know sides a and b and the included angle C is given by the law of cosines
![x^2 = a^2 + b^2 - 2ab \cos(C)](https://img.qammunity.org/2023/formulas/mathematics/college/a9s8ify59bntf6n5jfgtrsuc53vfki1cbu.png)
![x^2 = 18^2 + 15^ 2 - 2\cdot18\cdot15\cdot\cos(105)](https://img.qammunity.org/2023/formulas/mathematics/college/vtg528dw7tzf6a5ap9gua0j1y7gmakm1rz.png)
![x^2 = 324 + 225 - 540cos(105)](https://img.qammunity.org/2023/formulas/mathematics/college/txb6yrqaan6cxx1hi6te9m3euuxy8pffkb.png)
cos(105) = -0.2588
![x^2 = 324 + 225 -540(-0.2588)\\](https://img.qammunity.org/2023/formulas/mathematics/college/f5ljltsn6mx11fpbmkfzwmptp6hrmpqfly.png)
![324 + 225 = 549](https://img.qammunity.org/2023/formulas/mathematics/college/o0fdghojg61rwjd40lhpmgcs9zs6h7j3je.png)
![(-540)(-0.2588) = - 139.75](https://img.qammunity.org/2023/formulas/mathematics/college/46zd8i0u825uaxrf3svuonn80z84fdeyqt.png)
![x^2 = 549 - (- 139.75) = 688.75](https://img.qammunity.org/2023/formulas/mathematics/college/oqa5gohkhv5jsy6da9gka618dh1hdbr9h8.png)
![x^2 = 549 + 139.75 = 688.75](https://img.qammunity.org/2023/formulas/mathematics/college/h1k2glcz4291jbf6hh5gunk0kggbtn2mcu.png)
![x = \pm√(688.75) = \pm26.244](https://img.qammunity.org/2023/formulas/mathematics/college/hdl35ay4pyarg9mdhsd2l7u2ibwni2hgj1.png)
Since x cannot be negative,
x = 26.244 Answer