Answer:
(1.79, 7.58)
Explanation:
Standard form equation of a circle with center (h,k) and radius r is
![\displaystyle{(x-h)^2+(y-k)^2=r^2}](https://img.qammunity.org/2023/formulas/mathematics/high-school/2ye4f6cb0us1pyj7ibhumvt1s5b1qlwo69.png)
Use h = 0, k = 4 and r=4 to give
-->
![\displaystyle{(x-0)^2+(y-4)^2=4^2}](https://img.qammunity.org/2023/formulas/mathematics/high-school/hvhre39j3abws9l1opnl9okw2a48h3kmqm.png)
-->
![x^2 + (y-4)^2 = 16](https://img.qammunity.org/2023/formulas/mathematics/high-school/ecy94n1j1jpgbwkb18m5y9j0utkk6oejcs.png)
![(y-4)^2 = y^2 -8y + 16](https://img.qammunity.org/2023/formulas/mathematics/high-school/leibx8l1e1v5hu5ghfqqz8uctk3p9bfc5l.png)
The line is
![y = 2x + 4](https://img.qammunity.org/2023/formulas/mathematics/high-school/sda8gh2kr9gvc70vm3de5z9772tw43amre.png)
Substitute for this value of y in Equation (1)
![x^2 + (2x + 4 - 4)^2 = 16](https://img.qammunity.org/2023/formulas/mathematics/high-school/3aut1ycwvhignkj9yko0hhsa7fs8in0p34.png)
![x^2 + (2x)^2 = 16](https://img.qammunity.org/2023/formulas/mathematics/high-school/67xugahv15689cqx3640hwe5odb5bmg4qg.png)
![x^2 + 4x^2 = 16](https://img.qammunity.org/2023/formulas/mathematics/high-school/g2wsasq9i9msw7ryb67m3fxcyuu5p7bjjw.png)
![5x^2 = 16](https://img.qammunity.org/2023/formulas/mathematics/high-school/l46bgvifo5l1j9nnp0i14olfcm8c5bripl.png)
![x^2 = (16)/(5)](https://img.qammunity.org/2023/formulas/mathematics/high-school/f7xj7tz327jmf3yam4ldnuzoelqlmwfd1k.png)
![x = \pm \sqrt{(16)/(5)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/satqpmdhbmoj1xrfqwsdj6q4659v609bji.png)
![x = \pm (4)/(√(5))](https://img.qammunity.org/2023/formulas/mathematics/high-school/yxpxuuqr8144ueq7ymg3n1pml1fq3vl4hd.png)
Since we are asked to find point of intersection only on the first quadrant, we ignore the negative value of x
So
(rounded to 2 decimal places)
Substituting this value of x in
![y = 2x + 4](https://img.qammunity.org/2023/formulas/mathematics/high-school/sda8gh2kr9gvc70vm3de5z9772tw43amre.png)
![y = 2(1.79) = 4 = 7.58](https://img.qammunity.org/2023/formulas/mathematics/high-school/5z7ph8gfaf5q5jygvb4atetywsgkfakxbi.png)
So the intersection point is at
(1.79, 7.58)
See attached graph