75.4k views
3 votes
Let → v = 3 → i + 4 → j and → w = 3 → i + 7 → j . Find an exact number c so that → w − c → v is perpendicular to → v . c =

1 Answer

5 votes

If
\vec w-c\vec v is perpendicular to
\vec v, then their dot product is zero.


(\vec w - c \vec v) \cdot \vec v = (\vec w \cdot \vec v) - c(\vec v\cdot \vec v) = (\vec w \cdot \vec v) - c\|\vec v\|^2 = 0

We have


\vec v = 3\,\vec\imath + 4\,\vec\jmath \implies \|\vec v\|^2 = 3^2 + 4^2 = 25

and


\vec v \cdot \vec w = 9 + 28 = 37

so that


37 - 25c = 0

Solve for
c.


25 c = 37 \implies \boxed{c = (37)/(25)}

User Neuronet
by
4.2k points