134k views
4 votes
A force is specified by the vector f = [(-60)i (-80)j (-180)k] n. calculate the angles made by f with the positive x-, y-, and z-axes.

1 Answer

0 votes

Use the dot product identity


\vec a \cdot \vec b = \|\vec a\| \|\vec b\| \cos(\theta)

Take the dot product of
\vec f with the unit vectors
\vec\imath,\vec\jmath,\vec k, each of whose magnitude is 1. Then compute the angles made with the
x-,
y-, and
z-axis, respectively.

Dotting with
\vec\imath, for instance, we have


\vec f \cdot \vec \imath = \|\vec f\| \cos(\theta)


-60\,\mathrm N = \left(√((-60)^2 + (-80)^2 + (-180)^2) \,\mathrm N\right) \cos(\theta)


\cos(\theta) = (-60)/(20√(106)) = -\frac3{√(106)}


\theta = \cos^(-1)\left(-\frac3{√(106)}\right) \approx 106^\circ

so
\vec f makes an angle of about 106° with the
x-axis.

Similarly,


\vec f \cdot \vec \jmath = -80\,\mathrm N = (20√(106)\,\mathrm N) \cos(\theta)


\cos(\theta) = -\frac4{√(106)} \implies \theta \approx 113^\circ

and


\vec f \cdot \vec k = -180\,\mathrm N = (20√(106)\,\mathrm N) \cos(\theta)


\cos(\theta) = -\frac9{√(106)} \implies \theta \approx 151^\circ

User Puneet Verma
by
4.2k points