106k views
2 votes
PLEASE HELP ASAP. SOLVE FOR X AND Y. SHOW ALL WORK

PLEASE HELP ASAP. SOLVE FOR X AND Y. SHOW ALL WORK-example-1
User Ved Singh
by
3.7k points

1 Answer

0 votes

Answer


\left( \begin{array}{l l}x=-3+ 3√(3), & y=-3+2√(3)\\\\x=-3- 3√(3), & y=-3-2√(3)\end{array}\right)

Explanation:

Given system of equations:


\begin{cases}x-2y+(x)/(y)=6\\\\x^2-2xy-6y=0 \end{cases}

Rearrange the second equation to isolate y:


\implies x^2-2xy-6y=0


\implies x^2=2xy+6y


\implies x^2=y(2x+6)


\implies y=(x^2)/(2x+6)

Substitute the found expression for y into the first equation:


\implies x-2\left((x^2)/(2x+6)\right)+(x)/((x^2)/(2x+6))=6


\implies x-(x^2)/(x+3)\right)+(2x+6)/(x)-6=0


\implies (x^2(x+3))/(x(x+3))-(x^3)/(x(x+3))\right)+((2x+6)(x+3))/(x(x+3))-(6x(x+3))/(x(x+3))=0


\implies (x^2(x+3)-x^3+(2x+6)(x+3)-6x(x+3))/(x(x+3))=0


\implies x^3+3x^2-x^3+2x^2+12x+18-6x^2-18x=0


\implies -x^2-6x+18=0

Solve using the Quadratic Formula.

Quadratic Formula


x=(-b \pm √(b^2-4ac) )/(2a)\quad\textsf{when }\:ax^2+bx+c=0

Therefore:


\implies x=(-(-6) \pm √((-6)^2-4(-1)(18)) )/(2(-1))


\implies x=(6 \pm √(108))/(-2)


\implies x=(6 \pm √(36 \cdot 3))/(-2)


\implies x=(6 \pm √(36)√(3))/(-2)


\implies x=(6 \pm 6√(3))/(-2)


\implies x=-3\pm 3√(3)

Substitute the found values of x into the expression for y:


\textsf{When }x=-3+3√(3):


\implies y=((-3+3√(3))^2)/(2(-3+ 3√(3))+6)


\implies y=(36-18√(3))/(6√(3))


\implies y=(36)/(6√(3)) -(18√(3))/(6√(3))


\implies y=(6√(3))/(√(3)√(3)) -3


\implies y=-3+2√(3)


\textsf{When }x=-3-3√(3):


\implies y=((-3- 3√(3))^2)/(2(-3- 3√(3))+6)


\implies y=(36+18√(3))/(-6√(3))


\implies y=(36)/(-6√(3))+(18√(3))/(-6√(3))


\implies y=-(6)/(√(3))-3


\implies y=-(6√(3))/(√(3)√(3))-3


\implies y=-3-2√(3)

Therefore, the solutions are:


\left( \begin{array}{l l}x=-3+ 3√(3), & y=-3+2√(3)\\\\x=-3- 3√(3), & y=-3-2√(3)\end{array}\right)

User Sardar
by
3.7k points