Answer:
x = 8 and y = -3
Explanation:
Problem: 2x + 5y = 1; 3x − 2y = 30
1. Add -5y to both sides
⇒ 2x + 5y + −5y = 1 + −5y
⇒ 2x = -5y + 1
2. Divide both sides by 2
⇒

x =

3. Substitute
for x in 3x - 2y = 30
⇒ 3x - 2y = 30
⇒

4. Simplify both sides of the equation
⇒

5. Add
to both sides
⇒

⇒

6. Divide both sides by

⇒
=

y = -3
7. Substitute -3 for y in x =

⇒

⇒

8. Simplify both sides of the equation
⇒ x = 8